OCTOBER 2006 MAMMOTH CREEK FISH COMMUNITY SURVEY

FINAL REPORT

Prepared by:

Tim Salamunovich
Thomas R. Payne & Associates
P.O. Box 4678
890 L Street
Arcata, California 95521
(707) 822-8478

December 28, 2006

Table of Contents

Table of Contents	1
List of Figures and Tables	ii
List of Appendices	i
Introduction	1
Study Area/Study Sites	1
Methods	4
Results Physical Site Data Collection Site BH Site BL Site CL Site CH Site DL Site DH Site EH Site EL Electrofishing Trout Length-Frequency Trout Condition Factors Population Estimation	9
Discussion	35
Literature Cited	<i>1</i> 11

List of Figures and Tables

F	Ίg	ur	es
_			

1.	Map of Mammoth Creek basin and electrofishing sites	. 3
2.	Stream flow records for Mammoth Creek during the 2005 and 2006 fish surveys sites.	9
3.	Length-frequency data for rainbow trout by study site	17
4.	Length-frequency data for brown trout by study site	19
5.	Length-frequency data for brown trout at Site EL during September 2005 survey	21
	Length-frequency data for brook trout, Owens sucker and tui chub	
7.	Condition factor-frequency data for rainbow trout by study site	24
8.	Condition factor-frequency data for brown trout by study site	26
9.	Relative species abundance by study site	30
10.	Relative species biomass by study site	33
	ables	
1.	Levels of catchable-sized rainbow trout planted in Mammoth Creek for the past	_
_	three years	
	Summary of habitat and water quality measurements	
	Fish species collected during October 2006 surveys	
	Removal-depletion patterns and electrofishing statistics	
	Fish species mean weights and standardized abundance and estimates	31
0.	Number of Owens sucker and tui chubs captured during recent	26
7	electrofishing surveys	
	Standardized abundance estimates for brown trout, 1992-2006	
	Standardized abundance estimates for wild rainbow trout, 1992-2006	
フ.	Standardized abundance estimates for which familion from 1992-2000	
		10
		10

Appendix

- A October 2006 Habitat Characteristic Data Sheets
- B October 2006 Electrofishing Data Sheets
- C MicroFish 3.0 and Program CAPTURE Output for the October 2006 Electrofishing Data

Introduction

Since 1992, the fish populations in Mammoth Creek have been systematically surveyed annually each fall (except for 1998) to evaluate the efficacy of the existing bypass flows in maintaining the fish populations throughout the lower basin (Hood 1998, 2001, 2002, 2003, 2004, 2006a, 2006b; Hood et al. 1992, 1993, 1994; Jenkins 1999; Jenkins and Dawson 1996, 1997). This report presents the results of the latest monitoring effort. The specific objectives of the 2006 fish community survey were to characterize fishery population (e.g., species composition, abundance, biomass, length frequencies, etc.) at each of the historic Mammoth Creek fish sampling stations and to compare the results of the 2006 survey with those from previous years surveys.

Study Area/Study Sites

Mammoth Creek drains the Mammoth Crest and several high elevation lakes on the eastern side of the southern Sierra Nevada in Mono County, California. The Mammoth Creek basin has a drainage area of about 71 square miles (California Department of Water Resources 1973). Basin elevations range from about 11,000 feet in the headwaters along the Mammoth Crest to 7,000 feet at the Cashbaugh Ranch near its confluence with Hot Creek.

Mammoth Creek is part of the Owens Subprovince of the Great Basin Province (Moyle 2002). The native fish fauna likely consisted of Owens sucker (*Catostomus fumeiventris*) and Owens tui chub (*Gila bicolor snyderi*). The tui chub in Mammoth Creek are likely hybrid forms resulting from crosses with Lahontan tui chub (*G. b. obesa*) that were presumably introduced as baitfish in the 1960's (Chen et al. 2006). Historically, trout were absent from the Owens River watershed, which includes Mammoth Creek (Moyle et al. 1996). It is unknown when rainbow trout (*Oncorhynchus mykiss*) were introduced into the basin, but brown trout (*Salmo trutta*) were likely introduced in the 1890's (Jenkins et al. 1999). Both species have established naturalized populations in Mammoth Creek. In addition to the naturalized rainbow trout, California Department of Fish and Game's

(CDFG) Hot Creek Hatchery currently plants an average of over 13,000 catchable-sized rainbow trout, totaling almost 7,300 pounds at 12 to 15 locations along Mammoth Creek from Minaret Road (0.3 miles downstream of Site BL) to the Mammoth Creek Flume area (Site EL) each year (Table 1). Hatchery fish are planted about once a week throughout the trout fishing season (April-October).

Table 1. Levels of catchable-sized rainbow trout planted in Mammoth Creek for past three years. Data provided by CDFG.

Year	Number	Pounds	Average weight/fish (pounds)
2004	12,426	7,367	0.89
2005	13,109	7,200	0.55
2006	14,583	7,250	0.54
Average	13,373	7,272	0.66

New Zealand mudsnails ([NZMS], *Potamopyrgus antipodarum*) are known to occur in Hot Creek below the CDFG Hot Creek State Fish Hatchery. This known infestation site is located near its confluence with Mammoth Creek.

The fish survey project area consists of the lower 8.9 miles of Mammoth Creek from the Sherwin Street crossing in the town of Mammoth Lakes downstream to its confluence with Hot Creek (Figure 1). The fish survey project area has been divided into four distinct reaches based upon analysis conducted by Beak Consultants (Bratovich et al. 1990). The characteristics of aquatic habitat vary considerably among the four study reaches based upon the combination of channel morphology, riparian vegetation, stream gradient, and bed substrate size and composition. Channel braiding occurs in each study reach and is a result of large woody debris accumulation in lower gradient sections of the channel.

The experimental design and rationale for the original selection of the fish survey sample sites are described in detail in Bratovich et al. (1990). Distinct differences in the amount of riparian cover within each study reach were observed during the habitat mapping survey conducted in 1988 (Bratovich et al. 1990). To ensure representation of riparian cover and dispersion of

Figure 1. Map showing Mammoth Creek basin and location of the eight fish sampling sites. Red hashes show reach boundaries. Green dots are high riparian density fish samples sites, white dots are low riparian density sites. Red triangles show stream flow gage locations.

sampling sections, fish sampling stations were originally located within "high" and "low" density riparian habitat sites within each study reach. For example, Site BH represents high-density riparian cover habitat site within Reach B, while Site EL represents a low-density riparian cover site Reach E. Discretion must be used when comparing and interpreting the results between high and low-density riparian cover sites because of between reach variation in riparian density and tree species and changes in the riparian area over time.

Consistent with previous surveys, eight stations of approximately 300 feet in length were sampled in October 2006, with each site representing a high or low-density riparian vegetation cover habitat within the four study reaches (Figure 1). While over the years several of the sample sites have been moved up or downstream due to changes in landowner access or channel morphology, the habitat areas have remained unchanged (Hood 2006b). The sites sampled in 2006 were identical to those sampled in October 2005 and were easily identified by flagging and rebar left behind from previous surveys. In order to help in locating sites and to gain familiarity with access, TRPA biologists visited each of the eight sites with MCWD personnel immediately prior to the initiation of the surveys.

Methods

Physical Site Data Collection

Habitat dimensions, habitat characteristics, and water quality parameters were measured at all electrofishing sites at the time they were sampled. All data were recorded on standardized data forms. The length of each site was measured to the nearest foot from the bottom boundary to the top boundary using a hip chain. Stream width to the nearest 0.1 foot was measured at a minimum of eleven locations along the sampling station using a surveyors tape. The average of these measurements was used to determine the mean width at each station, which was used in combination with reach length to estimate a total sample area. Depth measurements (to the nearest 0.05 foot) were made using a survey

stadia rod at ¼, ½, and ¾ distance across each of the width cross-sections to estimate the average depth for the entire sample station. The maximum depth within each of the stations was also recorded using the deepest reading made within the particular survey unit. When unobstructed views could be obtained, stream gradient over the part or all of the length of the study sites was measured using a hand-level and the stadia rod placed on the stream bottom.

Habitat characteristics within each of the survey stations were also recorded at the time of sampling. The percentages of different habitat types (pool, run, riffle, or pocket water) comprising the station were visually estimated, along with the percentages of various substrate types by particle size (fines [<2mm], sand [2-7mm], gravel [8-75mm], cobble [76-300mm], boulder [>300 mm] and bedrock). The percent of the site available as fish cover was also estimated using the categories of surface turbulence, instream object cover, undercut bank, and overhanging vegetation within 48 inches of the water surface. The surface area of suitable trout spawning gravels in the study site was also estimated.

Water temperature was recorded at the time the stations were sampled. Other water quality parameters were also measured, including pH, conductivity (µS/cm), specific conductivity (temperature standardized conductivity), salinity (ppt), and dissolved oxygen concentrations (mg/L), and percent saturation. The pH measurements were made using a Tetratest® pH freshwater kit available at most aquarium stores. The remaining water quality parameters were measured using Yellow Spring Instruments® handheld meters (Models 30 and 550).

To aid in relocating stations during future efforts, the top and bottom boundaries along each bank were denoted used high-visibility surveyors flagging. The flagging was hung near the waters edge as well as further up the bank. In addition, sites were photographed from multiple vantage points, and the latitude and longitude of the top and bottom boundaries were determined using a handheld GPS receiver.

Electrofishing

Estimation of the abundance and population characteristics of resident fish in Mammoth Creek was conducted using multiple-pass removal-depletion by backpack electrofishing. The study sites were isolated with ¼-inch (6.4 mm) mesh block nets to prevent immigration or emigration of fish during sampling. Two shockers assisted by two netters moved upstream in concert across a unified front during each sampling pass. The shockers used portable backpack electrofishers (Smith-Root® Models 11A and 12A) to stun fish, which were captured by the netters using either ⅓-inch mesh dip nets. All captured fish were removed to 5-gallon live buckets filled with river water and equipped with a small bait bucket aerators. Fish in the live buckets were periodically transferred to a ⅓-inch mesh netted live box located in the river outside of the study site and away from the electric field.

A minimum of three passes of equal effort were made by the electrofishing teams within each reach. The target for the three-pass data was to provide a population estimate for the dominant trout species with a standard error that was ten percent (or less) of that estimate. After the third pass, the trout capture data was used to generate the population statistics on a laptop computer using MicroFish 3.0 (Van Deventer and Platts 1989). If the population estimate and standard error criterion was met, no additional passes were made. If the criterion was not met, another pass would be made and the new estimate and standard error would be re-evaluated.

Following each pass, captured fish were identified, measured and weighed. Prior to handling, fish were anesthetized in a weak CO₂ solution using commercially available effervescent pain-relief tablets (two tablets: ¾ gallons of clean river water). All fish were measured to the nearest millimeter fork length (FL) and weighed to the nearest 0.1 gram on an electronic scale. Fish measurement data and notes were recorded on standardized data sheets.

During processing, fish were inspected for any distinguishing marks (fin clips) or features (e.g. hook scars, deformed fins, tumors; fungus, etc.), which were duly noted on the data sheets. All rainbow trout were examined for physical evidence of hatchery origin, such as frayed fins, deformed fins, missing adipose fins, or abraded skin on snouts or backs. Rainbow trout showing such signs were designated as hatchery rainbow trout. Those rainbow trout not showing these characteristics were considered "wild" rainbow trout. All mortalities were also noted on the data sheets.

After processing, fish were placed in an aerated bucket of cool river water and allowed to recover. Fish in the recovery bucket were regularly transferred to ½-inch mesh net floating nylon fish bags located in the river outside the study site. All fish were held in the live bags until fully recovered from the shocking and handling. After the completion of the survey, all fish were distributed back to size-appropriate habitat areas of the study site.

In order to minimize contamination of field equipment with NZMS and their inadvertent spread within the Mammoth Creek basin, several precautionary measures were used during the survey. All gear was thoroughly rinsed and cleaned of vegetation and sediment at each site. We tried to minimize any exposure risks at the lower EL Site (near the hatchery and known NZMS locale) by using the hatchery foot bridge to cross Hot Creek. Following sampling at Site EL, all gear was rinsed off before leaving the site, and then hosed-off again at the Mammoth Community Water District (MCWD) office before moving to a new site the next day. During the entire survey period, we left the gear (waders/boots/dip nets/block nets/anode pole rings/live carts) outside each evening to freeze during the subzero nighttime temperatures that occurred in Mammoth Lakes at the time.

The length data was used to generate site-specific length-frequency histograms for each species. These plots show the size structure of the population, which tends to be related to the age structure of the specific population.

The multiple-pass capture data were used to generate a population estimate and 95 percent confidence interval for each species using the maximum-likelihood estimator from the microcomputer software program MicroFish 3.0 (Van Deventer and Platts 1989). MicroFish 3.0 cannot provide a population estimate if only a single fish is captured from all passes combined, or if all the fish are captured on the first pass. In these rare cases, the Zippin estimator from the software program CAPTURE (White et al. 1978) was used to calculate the population estimate and associated error. Both software programs generate probability-of-capture estimates based upon capture patterns. The capture probability estimate, which varies between zero and one, is a measure of sampling efficiency, with values greater than 0.40 being generally indicative of effective sampling (White et al. 1982).

Fulton's Condition Factor (K) was calculated for all trout using the formula of Bagenal and Tesch (1978). The condition factor compares the length and weight relationship of individual fish to assess their physical condition (Everhart et al. 1975). Higher condition factors indicate heavier fish for a given length. A value of 1.0 is generally considered normal for a healthy population of trout.

The population estimate data was used to generate abundance and biomass estimates. The abundance estimates were standardized to common indices (fish/mile and fish/acre) to facilitate comparisons between unequal length/area sites within and between years. Biomass estimates for each species at each station were calculated as the product of the estimated fish population and the mean weight of that species captured during electrofishing divided by the surface area of the river at sampled at that site. Biomass estimates were also calculated using several indices (e.g. pounds/mile and pounds/acre) to facilitate comparison with earlier surveys. Biomass is a more meaningful production index, since it takes into account both fish numbers and fish size (as indicated by weight).

Results

The electrofishing surveys of the eight Mammoth Creek study sites were conducted over five consecutive days from October 11-15, 2006. Stream flows in the upper portion of the study reach averaged 12.3 cubic feet per second (cfs) during this period and were about 40% higher compared to than stream flow during the Fall 2005 sampling (Figure 2). The average stream flow in the lower basin (i.e. downstream of Sherwin Creek) was slightly higher at 16.1 cfs, during the 2006 sample period (MCWD, unpublished data).

Figure 2. Stream flow records for Mammoth Creek at Old Mammoth Road crossing (near site CL) during the 2005 and 2006 fish surveys. Dark markers show actual fish sampling dates for both years. Data provided by MCWD.

Physical Site Data Collection

The habitat and water quality measurements were conducted at each site following the first electrofishing pass while the remaining crews were processing the captured fish. Copies of

the actual data sheets are contained in Appendix A. A summary of the habitat dimensions (i.e. lengths, widths, and depths), water quality parameters, and habitat characteristics (i.e. habitat types, substrate types, and cover types) are presented in Table 2. Site locations are shown on Figure 1.

By the time of the mid-October sampling, water temperatures were relatively cool (<48°F), while dissolved oxygen concentrations were moderate to high (>6.5 mg/L) at most of the study sites (Table 2). The combination of cold water temperature and moderate dissolved oxygen levels likely contributed to the low electrofishing/handling mortality noted during our 2006 surveys (0.8 percent for trout).

Our experience has shown that water conductivities in the 70-150 μ S/cm are ideal for effective backpack electrofishing. The water conductivity measured at all sites was within this range.

Site BH

This 303-foot long high-density riparian habitat site was located in the town of Mammoth Lakes just downstream of the Sherwin Road crossing (Figure 1). During our survey, this site had a mean width of 14.3 feet and a mean depth of 0.61 feet and was predominantly riffle habitat (Table 2). The site had a relatively low gradient (1.7 percent) and the substrate was dominated by cobble and gravel. About 755 ft² of suitable trout spawning gravel deposits were noted in the low flow channel at this site during our survey. Surface turbulence and overhanging vegetation were identified as the dominant cover types.

Site BL

This 287-foot long low-density riparian cover habitat site was located in the town of Mammoth Lakes just downstream of the Snow Creek Condominiums access road crossing (Figure 1). This site was located within a braided section of Mammoth Creek and so

Table 2. Summary of habitat and water quality measurements at each of the eight Mammoth Creek electrofishing sites, October 2006.

	ВН	BL	СН	CL	DH	DL	EH	EL
HABITAT MEASUREMENTS								
Sample date	15 Oct	14 Oct	15 Oct	14 Oct	12 Oct	13 Oct	12 Oct	11 Oct
Length (ft)	303	287	300	309	320	294	281	303
Mean width (ft)	14.3	9.5	12.8	20.1	11.8	19.0	18.3	16.8
Mean depth (ft)	0.61	0.43	0.95	0.96	1.34	0.97	0.82	1.09
Maximum depth (ft)	3.10	1.30	2.80	2.40	3.40	2.20	2.00	3.25
Surface Area (ft ²)	4,321.9	2,723.9	3,848.2	6,210.9	3,778.7	5,583.3	5,155.1	5,084.9
Gradient (%)	1.72	1.09	3.42	1.09		~7-10 ^a		0.53
WATER QUALITY MEASUREMENTS								
Water temperature (°C)	8.2	7.8	4.0	5.5	4.4	4.2	7.2	9.1
Conductivity (µS/cm)	125.1	124.5	115.9	121.3	79.8	79.8	86.7	125.4
рН	7.5	8.0	8.0	8.0	7.5	7.5	7.5	8.0
Dissolved Oxygen (mg/L)	5.48	6.83	6.55	6.65	10.15	9.93	9.41	6.78
Dissolved Oxygen (% saturation)	47.0	57.7	50.5	53.0	79.0	76.6	78.4	59.3
HABITAT TYPES								
% pool	5	5	15	5	15	20	5	25
% run	15	15	40	35	80	25	70	55
% riffle	80	80	35	35	5	30	25	20
% pocket water	0	0	10	25	0	25	0	0
SUBSTRATE TYPES								
% fines (<2 mm)	0	0	0	0	0	0	5	10
% sands (2 - 7 mm)	5	5	5	5	10	5	15	15
% gravel (7 - 75 mm)	20	80	20	30	20	20	35	60
% cobble (75 - 300 mm)	60	10	45	35	65	50	40	10
% boulder (>300 mm)	15	5	30	30	5	25	5	5
% bedrock	0	0	0	0	0	0	0	0
TROUT SPAWNING								
Surface area (ft ²)	755	1,635	54	191	484	120	860	1,470
COVER TYPES								
% surface turbulence	30	5	15	20	10	35	10	5
% instream object	15	5	40	50	20	35	10	5
% undercut bank	5	0	10	0	0	30	15	20
% overhanging vegetation (<48")	30	10	30	20	45	25	35	0

^a this value was visually estimated.

carried only a portion of the stream flow. During our survey, this site had a mean width of 9.5 feet and a mean depth of 0.43 feet and was predominantly riffle habitat (Table 2). The site had a relatively low gradient (1.1 percent) and the stream bed was dominated by gravel substrate. Over 1,600 ft² of suitable trout spawning gravel deposits were noted in the low flow channel at this site during our survey. Overhanging vegetation was identified as the dominant cover type, though little overall cover was available at this site.

Site CL

This 309-foot long low-density riparian habitat site was located about 0.4 miles downstream of the MCWD's stream gage site at Old Mammoth Road (Figure 1). This site is near the upstream boundary of the Sherwin Creek Meadows section of Mammoth Creek. This site was located in a single channel area of the creek. During our survey, this site had a mean width of 20.1 feet and a mean depth of 0.96 feet and was composed of a combination of run, riffle, and pocket water habitats (Table 2). The site had a relatively low gradient (1.1 percent) and the substrate was composed of near equal amounts of gravel, cobble, and boulder elements. About 191 ft² of suitable trout spawning gravel deposits were noted in the low flow channel at this site during our survey. Instream object cover (mainly boulder and large cobble) was identified as the dominant cover type. Signs of heavy angling pressure, in the form discarded lures and fishing line were evident at the time of the survey. Several groups of anglers were also observed fishing nearby at the time of our survey. This site is located in a stretch of creek that is regularly planted with catchable-sized rainbow trout from the Hot Creek Hatchery (Vern Carr, personal communication).

Site CH

This 300-foot long high-density riparian cover habitat site was located in a relatively remote area of Mammoth Creek about 0.1 miles upstream of the Sherwin Creek confluence (Figure 1). This site was located within a single channel, full flow section of Mammoth Creek. During our survey, this site had a mean width of 12.8 feet and a mean depth of 0.95

feet and was predominantly a combination run and riffle habitats (Table 2). The site had a relatively moderate gradient (3.4 percent) and the stream bed was dominated by cobble and boulder elements. Only about 54 ft² of suitable trout spawning gravel deposits were noted in the low flow channel at this site during our survey. Instream object and overhanging vegetation were identified as the dominant cover types.

Site DL

This 294-foot long low-density riparian habitat site was located in a relatively remote area of Mammoth Creek about 0.6 miles downstream of the Sherwin Creek confluence (Figure 1). While this area was a relatively low-density riparian section, it was located in a forested canyon area of the basin and carried the full stream flow of mammoth Creek. During our survey, this site had a mean width of 19.0 feet and a mean depth of 0.97 feet and was a combination of pool, run, riffle, and pocket water habitats (Table 2). Relatively large amounts of large woody debris were present in this reach, contributed from the adjacent forested hillsides. While gradient was not measured at the time of the survey, the gradient was visually estimated to be 7-10 percent. Substrate in this relatively high gradient reach was dominated by boulder and cobble. While gravel was judged to be a significant portion of the substrate, it was distributed among the larger cobble substrate elements and was most gravel was not judged available for trout spawning. Only 120 ft² of suitable trout spawning gravel deposits were noted in the low flow channel at this site during our survey. Surface turbulence, instream object (boulder and cobble elements) and undercut banks were identified as the dominant cover types.

Site DH

This 320-foot long high-density riparian cover habitat site was located about 0.30 miles upstream of the U.S. Highway 395 crossing (Figure 1). This site was located within a single channel area of Mammoth Creek. During our survey, this site had a mean width of 11.8 feet and a mean depth of 1.34 feet and was predominantly run habitat (Table 2). The density of riparian growth in this area precluded making any gradient measurements. The

stream bed in this reach was dominated by cobble substrates. About 484 ft² of suitable trout spawning gravel deposits were noted in the low flow channel at this site during our survey. Overhanging vegetation was identified as the dominant cover type.

Site EH

This 281-foot long high-density riparian habitat site was located downstream of the frontage road (Substation Road) crossing on the northeast side of U.S. Highway 395 (Figure 1). The upstream boundary of the study site was located about 25 feet downstream of the Los Angeles Department of Water and Power stream flow weir facility. During our survey, this site had a mean width of 18.3 feet and a mean depth of 0.82 feet and was composed predominantly of run habitat (Table 2). The density of riparian growth in this area precluded making any gradient measurements. The stream bed was dominated by cobble and gravel substrates. About 860 ft² of suitable trout spawning gravel deposits were noted in the low flow channel at this site during our survey. Overhanging vegetation was identified as the dominant cover type. Direct (three anglers actively fishing just upstream at time of our survey) and indirect evidence (abundance of discarded fishing tackle and multiple recreation vehicles parked nearby) suggest that this area receives substantial angling pressure. This site is located in an area that is regularly planted with catchable-sized rainbow trout from the Hot Creek Hatchery (Vern Carr, personal communication).

Site EL

This 303-foot long, single channel, low-density riparian cover habitat site was located in a meadow area of the creek just upstream of the Hot Creek confluence and adjacent to the Hot Creek State Fish Hatchery (Figure 1). The site is just downstream of extensive livestock grazing land. During our survey, this site had a mean width of 16.8 feet and a mean depth of 1.09 feet and was predominantly run habitat (Table 2). The site had a relatively low gradient (0.5 percent) and the stream bed was dominated by gravel substrate. About 1,470 ft² of suitable trout spawning gravel deposits were noted in the low flow channel at this site during our survey. This site also had the highest levels of fine sediment

of any study reach. Undercut bank was identified as the dominant cover type, though overall, cover was not plentiful at this site.

Electrofishing

The October 2006 survey collected a total of 731 fish from five species (Table 3). Brown trout, which were captured at all eight sites, was the most abundant species and accounted for 61.3 percent of the overall total catch. Rainbow trout, also captured at all eight sample sites, was the second most abundant species in the total catch (36.3 percent). Of the 265 rainbow trout captured during the survey, 77 were identified as hatchery-reared fish. No hatchery rainbow trout were identified at either of the high-density riparian habitat sites in reaches B or C. The greatest concentrations of hatchery rainbow trout occurred at sites CL and EH. Both these sites showed evidence of heavy angling pressure (i.e. presence of anglers and discarded fishing tackle) and suggest that these sites are frequently planted by CDFG. About 825 catchable-sized hatchery rainbow trout were released throughout Mammoth Creek on 12 October, the second day of our survey (Judy Urrutia, personal communication).

Table 3. Numbers of fish captured at each of the electrofishing study sites, Mammoth Creek, Mono County, California, 11-15 October 2006.

Species	BH	BL	СН	CL	DH	DL	EH	EL	Total
Brown trout	162	17	26	16	66	16	67	78	448
Rainbow trout (wild)	45	5	16	14	25	14	48	21	188
Rainbow trout (hatchery)	0	2	0	36	9	4	17	9	77
Brook trout	1	0	0	0	0	0	0	0	1
Owens sucker	0	0	0	0	0	0	0	11	11
Tui chub	0	0	0	0	0	0	0	6	6
Total	208	24	42	66	100	34	132	125	731

A handful of young-of-the-year (YOY) Owens suckers and tui chub were captured at the most downstream site (EL) and made up 1.5 percent and 0.8 percent of the total catch, respectively. A single juvenile brook trout (*Salvelinus fontinalis*) was captured at the most

upstream site (BH). The size of this fish (76mm FL) suggests that it was naturally produced and probably originated from one of the lakes upstream of the project area. Copies of the actual data sheets are contained in Appendix B.

Trout Length-frequency

Length-frequency analysis for rainbow trout captured at the various sites shows that multiple size (and presumably age) classes of wild rainbow trout are present at most of the study areas (Figure 3). The exception was for site BL, where all five of the wild trout appeared to be small YOY fish. The YOY size class dominated the wild rainbow trout populations at most of the study sites, especially at those sites where few hatchery trout were captured. All of the hatchery rainbow trout were ≥170 mm in length. Another observation of note from the length data is the larger size of the YOY size class at the lowermost sample Site EL compared to the other seven sites. At Site EL, YOY rainbow trout ranged in fork length from 97 to 122 mm, while at the other seven sites, the YOY were in the 38 to 78 mm range. This may have been a function of the higher water temperatures that seem to occur in this lower site near the confluence with Hot Creek, which may allow for earlier hatching and faster growth for trout.

Examination of the brown trout length-frequencies also shows multiple size/age classes present at all the sites (Figure 4). As was the case for the wild rainbow trout, YOY size class dominated the brown trout populations at most of the sites. The exceptions were Sites BL and DL, where few small fish were captured. The length-frequency data for the lowermost Site EL show a YOY size class that appeared to larger than those noted at the other upstream sites. At Site EL YOY brown trout ranged in fork length from 75 to 132 mm, while YOY at the remaining sites were in the 62 to 100 mm size range. This apparent size discrepancy for YOY brown trout at Site EL may be a function of the warmer water temperatures at this site and its proximity to Hot Creek.

Figure 3. Length-frequency data for wild and hatchery rainbow trout captured during the October 2006 Mammoth Creek electrofishing survey.

Figure 3. Length-frequency data for wild and hatchery rainbow trout captured during the October 2006 Mammoth Creek electrofishing survey. (continued)

Figure 4. Length-frequency data for brown trout captured during the October 2006 Mammoth Creek electrofishing survey.

Figure 4. Length-frequency data for brown trout captured during the October 2006 Mammoth Creek electrofishing survey. (continued)

Another interesting observation for Site EL is the complete absence of any brown trout in the 140 to 240 mm size range, which includes yearling and small adult brown trout (Figure 4). This missing size/age class is probably not explained by flow conditions, since rainbow trout in this size range were present (Figure 3). Examination of previously unreported 2005 length-frequency data for this site offers an explanation for the absence of yearling brown trout in 2006. The September 2005 survey at Site EL (conducted by the CDFG Wild Trout Program biologists) captured only one YOY brown trout and no yearling trout (Figure 5). This suggests a general failure in the 2005 and 2004 brown trout year classes, which explains the lack of yearling and small adult brown trout at Site EL evidenced in 2006.

Figure 5. Length-frequency data for brown trout captured at Site EL during the September 2005 Mammoth Creek electrofishing survey. (Data from CDFG)

The 2006 length data for the single brook trout captured at Site BH suggest that this was a YOY fish that likely originated from one of the upstream lakes where this species is known to reside (Figure 6). The suckers and tui chubs captured at Site EL in October 2006 were

also small, recently hatched YOY of the year fish (Figure 6). No adult suckers or minnows were observed or captured.

Trout Condition Factors

The condition factor-frequency analysis suggests healthy populations of both rainbow and brown trout were present at all the study sites, with mean condition factors all well above the 1.0 "healthy trout" threshold. Only 5.9 percent of the calculated condition values were less than this critical value. The mean condition factors for wild rainbow trout ranged from 1.14 to 1.32, while those for hatchery rainbow trout ranged from 1.12 to 1.30 (Figure 7). The brown trout condition factors ranged from 1.14 to 1.25 (Figure 8).

Population Estimation

The MicroFish 3.0 (or CAPTURE) output, including the population estimates and associated statistics for each species at each site can be found in Appendix C. The model output is summarized below in Table 4.

The population estimates and their associated confidence intervals appear to be reasonably good for all the species at most sites (Table 4). Our sampling goal of obtaining a standard error of the population estimate for the dominant trout species that was ≤10 percent of the population estimate after three electrofishing passes was met at all eight sites. Most of the probabilities of capture surpassed the 0.4 "effective sampling" threshold (White et al. 1982). The exceptions were for wild rainbow trout at Sites BL and DL, where more trout were captured in later passes than desirable.

The estimated number of brown trout captured in all sampling sections ranged from 16 fish at Site CL to 186 fish at Site BH (Table 4). The estimates for wild rainbow trout ranged from a low of 6 fish at Site BL to a high of 48 fish at Site EH. Hatchery rainbow trout population estimates ranged from zero fish at Sites BH and CH to a high of 36 hatchery

Figure 6. Length-frequency data for brook trout, Owens sucker, and tui chub captured during the October 2006 Mammoth Creek electrofishing survey.

Figure 7. Condition factor-frequency data for wild and hatchery rainbow trout captured during the October 2006 Mammoth Creek electrofishing survey.

Figure 7. Condition factor-frequency data for wild and hatchery rainbow trout captured during the October 2006 Mammoth Creek electrofishing survey. (continued)

Figure 8. Condition factor-frequency data for brown trout captured during the October 2006 Mammoth Creek electrofishing survey.

Figure 8. Condition factor-frequency data for brown trout captured during the October 2006 Mammoth Creek electrofishing survey. (continued)

Table 4. Multiple pass removal-depletion patterns and electrofishing statistics for various fish species captured at the eight Mammoth Creek sites, October 2006. Unless noted, all estimates were generated using the program MicroFish 3.0.

moteu, un estimate	s were generated using	Total	Population	Probability of					
Species	Removal Pattern	Catch	Estimate	Capture Estimate					
Site BH									
Brown trout	95 - 39 - 28	162	186 ± 21	0.492 ± 0.108					
Rainbow trout (wild)	30 - 10 - 5	45	47 ± 5	0.634 ± 0.169					
Brook trout*	1 - 0 - 0	1	1 ± 1	0.9996					
Site BL									
Brown trout	13 - 4 - 0	17	17 ± 1	0.810 ± 0.206					
Rainbow trout (wild)	2 - 1 - 2	5	6 ± 9	0.385 ± 0.956					
Rainbow trout (hatchery)*	2 - 0 - 0	2	2 ± 1	0.9998					
	Site C	<u>H</u>							
Brown trout	16 - 8 - 2	26	27 ± 4	0.634 ± 0.229					
Rainbow trout (wild)	10 - 5 - 1	16	16 ± 2	0.696 ± 0.274					
	Site C	<u>L</u>							
Brown trout	9 - 5 - 2	16	17 ± 4	0.571 ± 0.333					
Rainbow trout (wild)	7 – 6 - 1	14	14 ± 3	0.636 ± 0.332					
Rainbow trout (hatchery)	34 – 1 - 1	36	36 ± 0	0.923 ± 0.089					
	Site D	<u>H</u>							
Brown trout	44 - 13 - 9	66	70 ± 7	0.606 ± 0.144					
Rainbow trout (wild)	17 - 5 - 3	25	25 ± 2	0.694 ± 0.213					
Rainbow trout (hatchery)	8 - 1 - 0	9	9 ± 0	0.900 ± 0.227					
	Site D	<u>L</u>							
Brown trout	13 - 1 - 2	16	16 ± 1	0.762 ± 0.239					
Rainbow trout (wild)	5 - 6 - 3	14	20 ± 21	0.318 ± 0.490					
Rainbow trout (hatchery)	2 - 2 - 0	4	4 ± 2	0.667 ± 0.864					
	Site E	<u>H</u>							
Brown trout	44 - 18 - 5	67	69 ± 5	0.663 ± 0.132					
Rainbow trout (wild)	35 - 11 - 2	48	48 ± 2	0.762 ± 0.130					
Rainbow trout (hatchery)	14 - 2 - 1	17	17 ± 1	0.810 ± 0.206					
	Site E	<u>L</u>							
Brown trout	52 - 20 - 6	78	81 ± 5	0.655 ± 0.123					
Rainbow trout (wild)	18 - 2 - 1	21	21 ± 1	0.840 ± 0.168					
Rainbow trout (hatchery)	6 - 3 - 0	9	9 ± 1	0.750 ± 0.354					
Owens sucker	6 - 3 - 2	11	11 ± 3	0.611 ± 0.404					
Tui chub	4 – 1 – 1	6	6 ± 2	0.667 ± 0.570					

^{*} Estimate derived using Program CAPTURE

trout at Site CL. Site CL is located in an area of Mammoth Creek that is regularly stocked by CDFG with hatchery rainbow trout.

The calculated population estimates for each species were examined as the relative population abundance at each site (Figure 9). At five of the eight sample sites (Sites BH, BL, CH, DH, and EL), brown trout dominated the populations, contributing between 63 and 80 percent of the estimated number of fish. At Site EH, brown trout made up just over half the fish population numbers, with wild rainbow trout contributing another 36 percent. At Site DL, wild rainbow trout made up half the fish populations, with brown trout contributing 40 percent. Hatchery rainbow trout were a minor component of the fish populations at seven of the eights sites, contributing between zero and 13 percent of the estimated fish numbers. Site CL was the only location where hatchery rainbow trout dominated the populations numerically, making up almost 54 percent of the estimated fish numbers. Site CL is located in an area of Mammoth Creek that is regularly stocked by CDFG with hatchery rainbow trout.

The population estimates and reach lengths were used to extrapolate the population numbers to abundance estimates of fish per mile (Table 5). This extrapolation resulted in total trout (wild and hatchery fish) abundance estimates ranging from 460 to 4,077 trout per mile, with average of 1,666 trout per mile. If only wild trout (both rainbow and brown) are considered, the abundance estimates for all sites average 1,495 wild trout per mile, and ranged from 423 wild trout per mile at Site BL to 4,060 fish per mile at Site BH.

Examination of the abundance index by species showed that brown trout estimates averaged 1,059 brown trout per mile, with range of 287 to 3,241 fish per mile (Table 5). Wild rainbow trout abundance estimates averaged 436 wild rainbow trout per mile and ranged from 110 to 902 fish per mile. Hatchery rainbow abundance estimates averaged 169 hatchery fish per mile and ranged from zero to 615 fish per mile. The two highest

Figure 9. Relative species abundance presented as percentage of total study reach population estimates for Mammoth Creek October 2006 electrofishing surveys.

Table 5. Mean weights and standardized abundance and biomass estimates for various fish species captured at the eight Mammoth Creek electrofishing sites, October 2006.

	Mean wt	Abundance	Estimates	Biomass 1	Estimates				
Species	(grams)	Fish/mile	Fish/mile Fish/acre		Pounds/acre				
Species (grams) Fish/mile Fish/acre Pounds/mile Pounds/acre Site BH									
Brown trout	18.44	3,241	1,875	131.76	76.21				
Rainbow trout (wild)	7.15	819	474	12.91	7.47				
Brook trout	4.50	17	10	0.17	0.10				
Total		4,077	2,359	144.84	83.77				
		Site BL							
Brown trout	115.89	313	272	79.90	69.45				
Rainbow trout (wild)	2.56	110	96	0.62	0.54				
Rainbow trout (hatchery)	215.05	37	32	17.44	15.16				
Total		460	400	97.97	85.16				
		Site CH							
Brown trout	53.49	475	306	56.03	36.04				
Rainbow trout (wild)	106.19	282	181	65.92	42.40				
Total		757	487	121.96	78.44				
		Site CL							
Brown trout	84.98	290	119	54.42	22.34				
Rainbow trout (wild)	111.65	239	98	58.88	24.17				
Rainbow trout (hatchery)	146.87	615	252	199.17	81.75				
Total		1,144	469	312.47	128.25				
		Site DH							
Brown trout	60.71	1,155	807	154.58	108.00				
Rainbow trout (wild)	76.44	412	288	69.51	48.56				
Rainbow trout (hatchery)	199.92	149	104	65.45	45.73				
Total		1,716	1,199	289.54	202.29				
		Site DL							
Brown trout	109.55	287	125	69.40	30.15				
Rainbow trout (wild)	67.00	359	156	53.05	23.05				
Rainbow trout (hatchery)	236.53	72	31	37.46	16.27				
Total		718	312	159.90	69.47				
		Site EH							
Brown trout	36.39	1,297	583	104.01	46.77				
Rainbow trout (wild)	65.04	902	406	129.32	58.15				
Rainbow trout (hatchery)	121.41	319	144	85.50	38.45				
Total		2,518	1,133	318.82	143.38				
		Site EL							
Brown trout	69.69	1,411	694	216.85	106.60				
Rainbow trout (wild)	51.24	366	180	41.34	20.32				
Rainbow trout (hatchery)	275.22	157	77	95.15	46.78				
Owens sucker	0.58	192	94	0.25	0.12				
Tui chub	0.30	105	51	0.07	0.03				
Total trout		1,934	951	353.34	173.70				
Total Fish		2,231	1,096	353.65	173.86				

hatchery rainbow trout abundance estimates were at Site CL (615 fish per mile) and Site EH (319 fish per mile), which are both located in areas regularly stocked with hatchery rainbow trout.

The total trout (including hatchery fish) abundance estimates in sites characterized by high-density riparian cover ranged from 757 trout per mile at Site CH up to 4,077 trout per mile at Site BH (Table 5). The low-density riparian cover population estimates for all trout ranged from 460 trout per mile at site BL to 1,934 trout per mile at Site EL. The average abundance for all trout at the high-density riparian cover sites was 2,267 trout per mile compared to an average of 1,064 trout per mile for the low-density riparian cover sites. If the comparison is limited to wild trout only (brown and wild rainbow), the discrepancy between the average abundances in the two different riparian areas is even greater. The average abundance for wild trout at the high-density riparian cover sites was 2,146 wild trout per mile compared to an average of 844 wild trout per mile for the low-density riparian cover sites. The 2006 data suggested that the density of wild trout was 2.5 times greater in the high-density riparian Mammoth Creek sites compared with the low-density sites.

An opposite trend was apparent for the hatchery fish, with lower densities in the high-density riparian areas. The average abundance for hatchery rainbow trout at the high-density riparian cover sites was 117 trout per mile compared to an average of 220 hatchery trout per mile for the low-density riparian sites. It is not clear if this trend has any biological significance, or instead is an artifact of the tendency to release hatchery fish in areas that have little or no riparian cover such as road crossings and areas where a truck can access the creek.

The calculated population estimates were also used in combination with the mean weights for each species to generate a relative population biomass at each site (Figure 10). In terms of biomass, brown trout dominated the fish populations at three of the eight sample sites

Figure 10. Relative species biomass presented as percentage of total study reach biomass estimates for Mammoth Creek October 2006 electrofishing surveys.

(Sites BH, BL, and EL), contributing between 61 and 91 percent of the estimated total weight. At Site DH, brown trout still made up the major portion of the population biomass, contributing just over half the estimated total weight. At Sites DL and EH, there is a more equitable contribution to the total reach biomass by brown, wild rainbow and hatchery trout. At Site CH, wild rainbow trout made up over half the fish biomass, with brown trout contributing the remainder. Site CL was the only location where hatchery rainbow trout dominated the population biomass, making up almost 64 percent of the estimated fish weight. Site CL is located in an area that was stocked with hatchery rainbow trout two days prior to our survey.

The reach biomass estimates were used to generate standardized biomass estimates of pounds per mile and pounds per acre that could be compared across sites and potentially across years (Table 5). The most commonly used biomass estimate, pounds of fish per acre, is the most representative, since it takes into account differences in sample areas. Total trout biomass estimates for all trout species combined, averaged 120.6 pounds per acre, and ranged from 69.5 pounds per acre at Site DL to 202.3 pounds per acre at Site DH. If only wild trout (both rainbow and brown) are considered, the biomass estimates for all sites average 90 pounds of wild trout per acre, and ranged from 46.5 pounds per acre at Site CL to 156.6 pounds per acre at Site DH.

Examination of trout biomass by species showed that brown trout biomass estimates averaged 61.9 pounds per acre, with range of 22.3 to 108 pounds per acre (Table 5). Wild rainbow trout biomass estimates averaged 28.1 pounds per acre and ranged from 0.5 to 58.2 pounds per acre. Hatchery rainbow biomass estimates averaged 30.5 pounds per acre and ranged from zero to 81.8 pounds per acre (at Site CL, which was located in a recently stocked area of Mammoth Creek).

The total trout (including hatchery fish) biomass estimates in sites characterized by highdensity riparian cover ranged from 78.4 pounds per acre at Site CH up to 202.3 pounds per acre at Site DH (Table 5). The low-density riparian cover biomass estimates for all trout ranged from 69.5 pounds per acre at Site DL to 173.7 pounds per acre at Site EL. The average biomass estimate for all trout at the high-density riparian cover sites was 127 pounds per acre compared to an average of 114.1 pounds per acre at the low-density riparian cover sites. If the comparison is limited to wild trout only (brown and wild rainbow), the discrepancy between the average biomass estimates in the two different riparian cover areas is even greater. The average biomass for wild trout at the high-density riparian cover sites was 105.9 pounds of wild trout per acre compared to an average of 74.2 pounds per acre for the low-density riparian cover sites. The 2006 data suggested that the biomass of wild trout was 1.4 times greater in the high-density riparian Mammoth Creek sites compared with the low-density sites.

An opposite trend was apparent for the hatchery fish, with lower biomass in the high-density riparian areas. The average abundance for hatchery rainbow trout at the high-density riparian cover sites was 21 pounds per acre compared to an average of 40 pounds per acre at the low-density riparian sites. As was the case for the abundance estimates, it is not clear if this trend has any biological significance, or instead is a result of the hatchery planting site selection (i.e., favor truck accessible areas that have little or no riparian cover).

Discussion

The October 2006 fish population sampling in Mammoth Creek demonstrated that multiple-pass removal-depletion sampling using electrofishing techniques can produce resident fish population estimates with tight confidence intervals and a high probability of accuracy.

The electrofishing survey showed the fall 2006 resident fish population in the project area was dominated by brown trout, which made up the largest fraction of the abundance estimates (fish per mile) at six of the eight sample sites, and the largest fraction of the

biomass estimates (pounds per acre) at five of the eight sample sites. Wild rainbow trout while found at all eight sites, dominated the fish populations numerically at one site, and gravimetrically (biomass) at two of the sites. The results of the October 2006 survey also suggested higher densities and biomass of wild trout tended to be associated with the high-density riparian cover habitats. Hatchery rainbow trout dominated the fish populations both numerically and by biomass at one of the sites that located in an area that is regularly stocked with hatchery rainbow trout. Hatchery rainbow trout tended to have higher abundance and biomass indices at the low-density riparian sites, though this may likely more a function of supplementation program and not due to habitat preference.

In October 2006, native fish (suckers and chubs) were found at only the most downstream sample site. Due to their low numbers and small size, native fish contributed little to the overall fish population abundance or biomass indices. The relatively high numbers of native fish noted in lower Mammoth Creek in the early 1990's was likely due to lower stream flows and higher water temperatures that prevailed in the basin during the six-year long drought over that time span (Table 6).

Table 6. Numbers of Owens sucker and tui chub captured during the recent electrofishing surveys in Reach E of Mammoth Creek.

Year	Owens sucker	Tui chub
1992	205	417
1993	425	855
1994	524	392
1995	58	69
1996	84	48
1997	2	2
1999	49	6
2000	18	2
2001	6	2
2002	2	2
2003	54	19
2004	122	30
2005	18	2
2006	11	6

Moyle et al. (1996) speculated that native fishes in the Owens River basin did not generally occur in streams above 4,900 feet elevation. If this is true, the native fishes in lower Mammoth Creek are probably near the limits of their physical range and are able to expand their populations when stream flows remain low for extended periods of time.

The October 2006 length frequency data demonstrated the presence of multiple size/age classes of both brown trout and wild rainbow trout at all the survey sites. The presence of young-of-the-year brown and wild rainbow trout at the survey sites demonstrated that both these species had successful reproduction during 2006. The condition factors for both wild rainbow trout and brown trout at all the sample areas were all well above the 1.0 "healthy" trout threshold. The combination of successful reproduction, presence of multiple size/age classes, and high condition factors, suggest that the resident trout fishery in Mammoth Creek are healthy and continue to be maintained in good condition.

Additional support for categorizing the Mammoth Creek wild trout fishery as in good condition comes is derived from a comparison of the October 2006 biomass estimates in Table 5 to those from Gerstung (1973) shown in Table 7.

Table 7. Relationship between stream width and trout biomass in California waters (Gerstung 1973).

Average Stream Width (feet)	Trout Biomass (pounds per acre)
2-5	76
6 - 10	70
11 – 15	35
16 - 25	33
26 - 40	24
41 - 70	13

The stream widths of seven of the eight Mammoth Creek sites are in the 11 to 20 foot ranges (Table 2). These seven sites had an average wild trout (both brown and rainbow)

biomass estimate of 92.9 pounds per acre, and ranged from a low of 46.5 (Site CL) to a high of 156.6 pounds per acre (Site DH). These values are all well in excess of the 33 to 35 pounds per acre found by Gerstung (1973) in similarly sized California trout streams. Even site BL, with a mean width less than 10 feet, had a wild trout biomass estimate of 70.0 pounds per acre. All the available information continues to suggest that the Mammoth Creek basin trout populations are being maintained in good condition.

The 2006 biomass estimates could not be compared to recent survey data since biomass estimates were not calculated. A brief examination of the more recent survey raw data revealed that weights for many of the larger trout were not recorded, making meaningful and accurate weight estimates impossible. In addition, survey area lengths and weights were apparently not measured, of if they were, not reported. The lack of complete and accurate fish weights and survey areas, make it impossible to calculate area-based biomass (i.e. pounds per acre) estimates from the available prior survey data.

A comparison of the standardized abundance estimates (i.e. number of trout per mile) for the October 2006 survey with values from previous surveys showed an increase in brown trout abundance over the 2005 levels in five of the eight study sites, as well as the yearly mean (Table 8). Despite these increases brown trout abundance estimates in October 2006 were still below the fourteen year averages in all but one study area (Site EL).

The 2006 abundance estimates for wild rainbow trout were higher than those from 2005 in six of the eight study sites (Table 9). This trend may have held for Site EL as well, since in 2005 no attempt was made by the DFG survey crews to distinguish between hatchery and wild trout at this site. Despite the general increases over 2005 levels, the 2006 wild rainbow trout abundance estimates are still below the fourteen year average for most of the study sites.

Table 8. Standardized abundance estimates (trout/mile) for brown trout captured at the eight Mammoth Creek electrofishing sites, 1992-2006. Bold numbers indicate highest value for each site. Numbers in parenthesis indicate where the 2006 survey results ranked among the fourteen surveys.

					Sample Sit	te			
	BH	BL	СН	CL	DH	DL	EH	EL	Yrly Mean
2006	3,241 (8 th)	313 (13 th)	475 (13 th)	290 (7 th)	$1,155 (5^{th})$	287 (13 th)	1,297 (9 th)	1,411 (4 th)	1,059 (12 th)
2005	1,320	792	634	194	387	862	704	563	682
2004	3,186	440	1,302	845	880	1,549	1,355	581	1,267
2003	2,869	458	1,901	933	616	1,426	1,390	616	1,276
2002	5,826	898	1,056	246	563	1,672	1,866	264	1,549
2001	4,717	1,707	1,496	246	1,144	1,162	1,461	528	1,558
2000	6,670	634	1,074	88	810	1,162	1,179	2,253	1,734
1999	5,333	1,338	1,443	299	2,200	616	2,182	2,200	1,951
1997	8,589	704	1,690	211	616	1,654	3,819	1,795	2,385
1996	4,840	158	1,302	158	1,901	634	898	1,144	1,379
1995	1,760	546	334	88	616	18	334	1,038	592
1994	4,171	2,253	810	528	4,418	1,584	2,464	405	2,079
1993	2,957	2,658	510	1,232	1,056	510	1,232	158	1,289
1992	3,042	1,848	563	845	1,390	1,584	3,978	194	1,681
1992-2006	4,180	1,053	1,042	443	1,268	1,051	1,726	939	1,463

Table 9. Standardized abundance estimates (trout/mile) for wild rainbow trout captured at the eight Mammoth Creek electrofishing sites, 1992-2006. Bold numbers indicate highest value for each site. Numbers in parenthesis indicate where the 2006 survey results ranked among the fourteen surveys.

					Sample Si	te			
	BH	BL	СН	CL	DH	DL	EH	EL	Yrly Mean
2006	819 (2 nd)	$110 (8^{th})$	$282 (6^{th})$	239 (8 th)	413 (8 th)	359 (7 th)	902 (2 nd)	366 (3 rd)	436 (5 th)
2005	493	282	70	0	158	158	141	475 ^a	222
2004	422	246	123	35	229	246	88	18	176
2003	669	194	106	35	211	282	158	0	207
2002	1,039	810	123	123	528	475	229	18	418
2001	616	106	88	722	563	422	493	18	379
2000	35	616	405	6,354	528	669	2,253	158	1,377
1999	123	669	546	1,179	686	510	334	194	530
1997	123	123	810	933	722	1,021	810	88	579
1996	282	18	1,690	528	933	229	458	563	588
1995	158	0	53	59	18	88	53	194	78
1994	35	0	581	1,654	387	616	106	0	422
1993	18	0	70	0	299	35	53	18	62
1992	70	0	141	651	546	229	141	0	222
1992-2006	350	227	363	894	444	381	444	151	407

^a hatchery and wild trout not differentiated at this site; all trout assumed to be wild fish

The fourteen year record of abundance data suggests that the trout populations in Mammoth Creek exhibit wide variations both between years and even between sites within years. These annual variations are probably controlled by a wide variety of environmental and biological variables including stream flows, water temperatures, habitat availability, food availability, reproductive success, year class strength, recruitment, overwinter survival, hatchery stocking practices, and angling pressure. Despite the spatial and temporal variations in trout abundance, evident in the long term Mammoth Creek fish survey data, the wild trout populations in the basin still appear to be in good physical condition.

Literature Cited

- Bagenal, T.B., and F.W. Tesch. 1978. Age and growth. Chapter 5 *in* T.B. Bagenal, editor. Methods for assessment of fish production in fresh waters, 3rd edition. International Biological Programme Handbook 3. Blackwell Scientific Publications. Oxford. 365p.
- Bratovich, P.M., K.L. Carlson, D.B. Christophel, and T.A. Jackson. 1992. Expert Testimony on Mammoth Creek Instream Flow Issues. Prepared by Beak Consultants for the California State Water Resources Control Board Water Rights Hearing on Mammoth Creek, March 10, 1992.
- Bratovich, P.M., K.L. Carlson, D.B. Christophel, and T.A. Jackson. 1990. Mammoth Creek Instream Flow Investigations. Prepared by Beak Consultants for the Mammoth County Water District, Mammoth Lakes, California.
- California Department of Water Resources. 1973. Mammoth basin water resources environmental study. December 1973 final report.
- Chen, Y., S. Parmenter, and B. May. 2006. Introgression between Lahontan and endangered Owens tui chubs, and apparent discovery of a new tui chub in the Owens Valley, California. Online publication in Conservation Genetics, Volume 7.
- CH2M Hill. 2000. Environmental Impact Report/ Environmental Impact Statement Changes in Mammoth Creek Instream Flow Requirements, Change of Point of Measurement, and Change of Place of Use. Prepared for: Mammoth Community Water District and United States Forest Service.
- Everhart, H.W., A.W. Eipper, and W.D. Youngs. 1975. Principles of fishery science. Cornell University Press, Ithaca, NY. 288p.
- Gerstung, E.R. 1973. Fish population and yield estimates from California trout streams. Cal-Neva Wildlife 1973:9-19.
- Hood, D.J. 1998. Mammoth Creek 1997 Fish Community Survey. Prepared by KDH Biological Consultants for the Mammoth Community Water District, Mammoth Lakes, California.
- Hood, D.J. 2001. Mammoth Creek 2000 Fish Community Survey. Prepared by KDH Biological Consultants for the Mammoth Community Water District, Mammoth Lakes, California.
- Hood, D.J. 2002. Mammoth Creek 2001 Fish Community Survey. Prepared by KDH Biological Consultants for the Mammoth Community Water District, Mammoth Lakes, California.

- Hood, D.J. 2003. Mammoth Creek 2002 Fish Community Survey. Prepared by KDH Biological Consultants for the Mammoth Community Water District, Mammoth Lakes, California.
- Hood, D.J. 2004. Mammoth Creek 2003 Fish Community Survey. Prepared by KDH Biological Consultants for the Mammoth Community Water District, Mammoth Lakes, California.
- Hood, D.J. 2006a. Mammoth Creek 2004 Fish Community Survey. Prepared by KDH Biological Consultants for the Mammoth Community Water District, Mammoth Lakes, California.
- Hood, D.J. 2006b. Mammoth Creek 2005 Fish Community Survey. Draft report prepared by KDH Biological Consultants for the Mammoth Community Water District, Mammoth Lakes, California.
- Hood, D.J., P.M. Bratovich, and D.B. Christophel. 1993. Mammoth Creek 1993 Fish Community Survey. Prepared by Beak Consultants for the Mammoth County Water District, Mammoth Lakes, California.
- Hood, D.J., P.M. Bratovich, and D.B. Christophel. 1994. Mammoth Creek 1994 Fish Community Survey. Prepared by Beak Consultants for the Mammoth County Water District, Mammoth Lakes, California.
- Hood, D.J., D.B. Christophel, and P.M. Bratovich. 1992. Mammoth Creek Fish Community Survey. Prepared by Beak Consultants for the Mammoth County Water District, Mammoth Lakes, California.
- Jenkins, T.M., Jr. 1999. Mammoth Creek 1999 Fish Community Survey. Prepared by Horseshoe Canyon Biological Consultants for the Mammoth County Water District, Mammoth Lakes, California.
- Jenkins, T.M., Jr., and D.R. Dawson. 1996. Mammoth Creek 1995 Fish Community Survey. Prepared by Sierra Nevada Aquatic Research Laboratory for Mammoth County Water District, Mammoth Lakes, California.
- Jenkins, T.M., Jr., and D.R. Dawson. 1997. Mammoth Creek 1996 Fish Community Survey. Prepared by Sierra Nevada Aquatic Research Laboratory for Mammoth County Water District, Mammoth Lakes, California.
- Jenkins, T.M., Jr., S. Diehl, K. Kratz, and S.D. Cooper. 1999. Effects of population density on individual growth of brown trout in streams. Ecology 80:941-956.

- Moyle, P.B. 2002. Inland Fishes of California, 2nd edition. University of California Press, Berkeley, California. 502p.
- Moyle, P.B., R.M. Yoshiyama, and R.A. Knapp. 1996. Status of fish and fisheries. Chapter 33 *in* Sierra Nevada Ecosystem Project Final report to Congress, Volume II, Assessments and scientific basis for management options. University of California Centers for Water and Wildland Resources, Davis, CA.
- Van Deventer, J.S., and W.S. Platts. 1989. Microcomputer software system for generating population statistics from electrofishing data user's guide for MicroFish 3.0. USDA, Forest Service General Technical Report INT-254. Intermountain Research Station, Ogden, Utah. 29p.
- White, G.C., K.P. Burnham, D.L. Otis, and D.R. Anderson. 1978. User's manual for program CAPTURE. Utah State University Press, Logan, Utah. 40p.
- White, G.C., D.R. Anderson, K.P. Burnham and D.L. Otis. 1982. Capture-recapture and removal methods for sampling closed populations. Los Alamos National Laboratory Report, LA-8787NERP: 235 pp.

Appendix A

October 2006 Habitat Characteristic Data Sheets

Reach Habitat Characterization:

Mean Width

14.3 ft

4,321.88+ Total Volume

Mean Depth

Habi	tat types	
Pool	5	%
Run	15	%
Riffle	80	%
POW	Ø	%
		%

Substrate type	s	
fines (< 2mm or 1/16")	ø	%
sand (2-7mm or 1/16-1/4")	#5	%
gravel (7-75mm or 1/4-3")	20	%
cobble (75-300mm or 3-12")	60	%
boulder (>300mm or >12")	15	%
bedrock	ø	%
· ` ` -	15 ø	

0.61 ft

2,645.52 ft3

Gradient FS to top 3.80						
3.80						
6.90						
3.10						
180						
1.72						

trout spawning: 180 125

Maximum Depth

3.10

µS/cm

ppt

mg/L

% Saturation

Fish Cover		
Surface turbulence	30	%
Instream object	15	%
Undercut bank	"5	%
Overhanging vegetation (<48")	30	%

Th	omas R.	Payne &	Associates	s Electrof	ishing Surv	ey - Habita	t Characterist	10 164 ROOG
Stream:	MANI	MOTH (JCK	County:	1/0/10	C.C.	. Page:	10 164 ROOG
Reach:	BL	·		Est. Q:	. N 5 c	<u> </u>	. Candustivity	-
Air Temp.:		@	H20 Temp.:		@	•		μS/cm
All Temp		<u> </u>	H20 Temp.:		@	57	Specific Cond.: _	μS/cm
Length:	28	37			gradient:	1.09 %	. Salinity: _	ppt
							D.O.: _	mg/L
ft)/ m	(ft)m	 	/ft	√m			D.O.:	% Saturatio
Distance	Width	1/4 Depth			Mean Depth	1	pH:_	
U	10.1	0.15	0.40	0.60		GPS Coord.		
30	10.1	0.30	0.50	0.20				
9	8,5	0.80	0.80	0,70				
90	9.0	0.20	2,40	0.35		1		
120	9.3	0.25	0.50	0.60		BUCKÉT		
150	10.3	0.60	0.65	0.60			WCOVER (X 9 87 C
180	8.2	0.20	0.50	0.40		1	3) TOP DOWN	AMID UP
240	9.6	0.35	0.50	0.40		1	DMID DOL	UN OBOTTONE
270	9.7-	0.30	0.40	0.35			DBO Trom u	<u> </u>
287	11.2	0.25	0.30	0.30				
				<u> </u>		-		
	a	,5]	0.4	3	1		
Mean Width	<u> </u>		∐ Miean Depth			1		(2 ,
Total Area	272	3,89	Total Volume	15180	9.35		Maximum Depth	1.58
Reach Hab	itat Chara	acterization	:				_	
Н	labitat typ	es]		Substrate typ	es	-	
Poo	1 4	5 %		fines (< 2m		<u>ø</u> 9	_	
Rur	1 /]		m or 1/16-1/4")		6	N 1635 H
Riffle	<u>ε</u> Ε	30 %		-	5mm or 1/4-3")	80 9	trout spawning:	
POW	1		4		-300mm or 3-12") 300mm or >12")	<u> 10 9</u>	a 7∕	,
1		%	4	bedrock	300mm or >12 }	<u> </u>	å	1.0008
L				bedrock			d 60%	Ola
					Gra	dient	7 5p20	1 lead on able
	Fie	h Cover		٦	FS to top	4,40		
Surface tu		00101	5 %		FS to bottom	5.90	:	
instream o			5 9		Elev change]	
Undercut b	•		Ø 9	-	Distance	137 400	_	
	ng vegetat	ion (<48")	10 9	6	Gradient	1.099.		
		5 62	1045 485 mellove				1	
		T 82	485 melline	turn			20+ , <0	
		-	,				3	

Stream:		-	_		Mono			10 / 15	
Peach:	Cul C		Venyveet	site) Est O	~ 100	· Fc	Page:	.1 of	
Air Tomo	20 C	@ 0820	H20 Temp	400 Chase	@ 0815°		Conductivity:	115.9	սS/cm
Air Temp	3 -	@ 0000	H20 Tomp.:	(5°C	@ 1205	•	Conductivity: _ Specific Cond.: _	1931	uS/cm
Air Temp.:	2 🙉	<u>~</u>	nzo remp	6.5 C	<u> </u>	3,42	Soliniba	0.1	nnt
Length:	<u> 30</u>	<u> </u>			gradient	2,12			
_	•						D.O.: _	6.55	mg/L
((ft)/ m	/(ft)/ m		(ft	/ m		1	D.O.: _	50,5 %	Saturat
Distance	Width	1/4 Depth	1/2 Depth	3/4 Depth	Mean Depth]	pH:_	8.0	
0	17.5	0.7	1.20	0.95		GPS Coord.			
30	16.6	\$1.20	0.60	0.40		8.25			
60	15.B	1:20	0.35	2.40		8,2			
90	10.0	0.70	0.95	0.90		ł			
120	11.8	1.20	1.15	_ \$ 0,4		-			
150	14,0	0.80	0.70	0.95		Vic Municipal	00000	7708 0	
180	11,7_	1.10	1.00	0.50		Pnotos:	OCOVER (I A M	70 /18
210	10.8	0.90	1.40	1.00		1 '	S) MID DE		
240 .	10.2	1.45	1.50	1.10		-	6 BOTTOM		
	12.3	0.70	1.05	1.00		1	(7) BOTTOM		
306	10.9	0.70	1.05	7.00		1	BBOTTOM		
						1			
						1			
Mean Width	12.8	3 ft	Mean Depth	0.95	-ft				
Total Area		.18ft ²	Total Volume	3,638	3. 28 ft ³		Maximum Depth	2.80	. <u></u>
Reach Hab	itat Charac	cterization:						(7-	
H	abitat type	s			Substrate typ	es			
Pool	- 15	%		fines (< 2mn	or 1/16")	ø %			
	40 🏂				n or 1/16-1/4")	5 %	1	c.l	
Riffle	35	/ %			mm or 1/4-3")		trout spawning:	54	1
POW	10	%		1 -	300mm or 3-12")	45 %]	- 	
		%		boulder (>3	00mm or >12")	30 %].	10830	. Δ
				bedrock		ø %		30	, 7
			•				J	2 6	ナノ
					Grad	dient	1	5	4
	Fish	Cover		1	FS to top	4.15	1		
Surface turl			15 %	1	FS to bottom	8.25	1		
nstream ob			40 %		Elev change				
Indercut ba			/0 %	1	Distance	120	1		
Overhangin		on (<48")	30 %	1	Gradient		1		
- romangin	5 . 5 go . a . c			j			1		
	BOTTON TOP ~	n ar Til 300 upst	tis CH	CTOP X	Mcwi	s CH	Previous		

	Stream:	MAM	noth (CRK	County:	MoNO		t Characteris	10/14/	2006
	Reach:	CL			Est. Q:	2100	P8	Page:	.1 of_	
				H20 Temp.:				Conductivity:		µS/cm
	Air Tomp.:		@	H20 Temp.:		a	-	Specific Cond.:		μS/cm
	Longth:		209	1120 1011.p.		gradient:	1.09%			
	Lengui.		101			5 ,)ı	
,-	_	<u>.</u>			_		1			· ·
L	(ft //m	(ft/m			m lou pour	Mean Depth	1	D.O	% S	<u>saturatio</u>
┝	Distance	Width	1/4 Depth	1/2 Depth	3/4 Depth	Wean Depth	GPS Coord	p		
ŀ	0	20.2	1,60	1.25	1.05		1 0 00010			
ŀ	30			1.05	0.80		i			
╌┠	90	31.3	0.2	0.5	0.7		1			
ŀ	120	24.3	1.05	0.70	1.20		1			
ŀ	150	16.6	1.20	1.00	0.65		1		_	
ςŀ	180	18.2	0.60	1.00	0.90		Photos:	1 COVER	Drol X	
`ŀ	210	14.2	0.60	0.75	0.75		1	3 TOP DOW	N B BOTTON	18
ŀ	240	1.0.9	0.75	0.65	0,75] .	5 borrow up	SMID DO	_ايەن
ŀ	296	19.4	1.15	1.10	0.75		1	AMID OP		
٨t	389	10.5	1.50	1.60	1.65		1			
1							_			
Ī							1			
ı				1		<i>C</i> .	1			
١	Mean Width	20	11 ft	Mean Depth	0.96	, + =				
	Total Area	6.2	10.90 Ft		5010	23 ft3			10 U.	
- 1	lotal Area	-ري		Total Volume	2,7 60	2,45 ft	4	Maximum Depth	2.40	
L			cterization		2,9 6		_	Maximum Depth	2.40	<u> </u>
l	Reach Hab	itat Chara	cterization			Substrate typ	es	Maximum Depth	2.40	
[Reach Hab	itat Chara abitat type	cterization			Substrate typ	~]	2.40	
[Reach Hab H	nitat Chara	cterization es %		fines (< 2mm	Substrate typ	Ø %]	2.40	
	Reach Hab H Pool Run	abitat type	cterization es %		fines (< 2mm sand (2-7mm	Substrate typ n or 1/16") n or 1/16-1/4")	<u>\$</u> %		194	ft²
	Reach Hab H Pool Run Riffle	abitat type	cterization es % % %		fines (< 2mm sand (2-7mm gravel (7-75m	Substrate typ n or 1/16") n or 1/16-1/4") mm or 1/4-3")	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	trout spawning:	194	ft²
	Reach Hab H Pool Run	abitat type	cterization ss % % % %		fines (< 2mm sand (2-7mm gravel (7-75 cobble (75-3	Substrate typ o or 1/16") o or 1/16-1/4") mm or 1/4-3") 300mm or 3-12")	5 % 30 25 % 35 %	-trout spawning:	194	ft ²
	Reach Hab H Pool Run Riffle	abitat type	cterization es % % %		fines (< 2mm sand (2-7mm gravel (7-75i cobble (75-3 boulder (>30	Substrate typ n or 1/16") n or 1/16-1/4") mm or 1/4-3")	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	trout spawning:	191	ft²
	Reach Hab H Pool Run Riffle	abitat type	cterization ss % % % %		fines (< 2mm sand (2-7mm gravel (7-75 cobble (75-3	Substrate typ o or 1/16") o or 1/16-1/4") mm or 1/4-3") 300mm or 3-12")	5 % 30 25 % 35 %	trout spawning:	191	ft ²
	Reach Hab H Pool Run Riffle	abitat type	cterization ss % % % %		fines (< 2mm sand (2-7mm gravel (7-75i cobble (75-3 boulder (>30	Substrate type or 1/16") or 1/16-1/4") mm or 1/4-3") 900mm or 3-12") 900mm or >12")	\$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	trout spawning:	191 8	ft ²
	Reach Hab H Pool Run Riffle	abitat type 5 35 25	cterization		fines (< 2mm sand (2-7mm gravel (7-75i cobble (75-3 boulder (>30 bedrock	Substrate type or 1/16") or 1/16-1/4") mm or 1/4-3") 900mm or 3-12") 900mm or >12")	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	trout spawning:	191 8 8 9 9 5	ft²
	Reach Hab H Pool Run Riffle POW	sitat Chara labitat type 35 35 25	cterization ss % % % %		fines (< 2mm sand (2-7mm gravel (7-75i cobble (75-3 boulder (>30 bedrock	Substrate type of 1/16") of 1/16-1/4") mm or 1/4-3") 100mm or 3-12") 100mm or >12") Gra FS to top	Ø 96 5 96 30 ₩ 96 30 % 30 % 96 dient ₩.10	trout spawning:	191 8	ft ²
	Reach Hab H Pool Run Riffle POW	sitat Chara labitat type 5 35 25 Fish bullence	cterization	20 %	fines (< 2mm sand (2-7mm gravel (7-75i cobble (75-3 boulder (>30 bedrock	Substrate type of 1/16") of 1/16-1/4") mm or 1/4-3") 000mm or 3-12") 000mm or >12") Gra FS to top FS to bottom	# 9% \$ 9% 30 25 9% 30 9% 30 9% 4.10 5.50	trout spawning:	191 8 9 9 9 9	ft ²
	Reach Hab H Pool Run Riffle POW	sitat Chara labitat type 35 35 25 Fish bullence bject	cterization		fines (< 2mm sand (2-7mm gravel (7-75; cobble (75-3 boulder (>30 bedrock	Substrate type of 1/16") of 1/16-1/4") mm or 1/4-3") soomm or 3-12") soomm or >12") Gra FS to top FS to bottom Elev change	# 9% 5 9% 30 2 9% 35 9 9% 30 9% 9% dient # 10 5 50 1 40	trout spawning:	191 8 8 9 9 9 9 9 9 9	ft²
	Reach Hab Pool Run Riffle POW Surface tur Instream of	sitat Chara labitat type 35 35 25 Fish bulence bject ank	cterization es % % % % % %	20 % 50 % \$5 %	fines (< 2mm sand (2-7mm gravel (7-75; cobble (75-3 boulder (>30 bedrock	Substrate type of 1/16") of 1/16-1/4") mm or 1/4-3") 000mm or 3-12") 00mm or >12") Gra FS to top FS to bottom Elev change Distance	# 9% 5 9% 30 ₩ 9% 30 % 30 % 60 1.40 1.29	trout spawning:	191 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ft²
	Reach Hab H Pool Run Riffle POW	sitat Chara labitat type 35 35 25 Fish bulence bject ank	cterization es % % % % % %		fines (< 2mm sand (2-7mm gravel (7-75i cobble (75-3 boulder (>30 bedrock	Substrate type of 1/16") of 1/16-1/4") mm or 1/4-3") comm or 3-12") comm or >12") Gra FS to top FS to bottom Elev change Distance Gradient	# 9% 5 9% 70 ₹ 9% 30 ₹ 9% 30 9% dient #.10 5.50 1.40 129 1.00 70	trout spawning:	191 8 8 9 9 9 9 9 9 9	ft ²
	Reach Hab Pool Run Riffle POW Surface tur Instream of	sitat Chara labitat type 35 35 25 Fish bulence bject ank	cterization es % % % % % %	20 % 50 % \$5 %	fines (< 2mm sand (2-7mm gravel (7-75i cobble (75-3 boulder (>30 bedrock	Substrate type of 1/16") of 1/16-1/4") mm or 1/4-3") comm or 3-12") comm or >12") Gra FS to top FS to bottom Elev change Distance Gradient	# 9% 5 9% 70 ₹ 9% 30 ₹ 9% 30 9% dient #.10 5.50 1.40 129 1.00 70	trout spawning:	191 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ft ²
	Reach Hab Pool Run Riffle POW Surface tur Instream of	sitat Chara labitat type 35 35 25 Fish bulence bject ank	cterization es % % % % % %	20 % 50 % \$5 %	fines (< 2mm sand (2-7mm gravel (7-75i cobble (75-3 boulder (>30 bedrock	Substrate type of 1/16") of 1/16-1/4") mm or 1/4-3") comm or 3-12") comm or >12") Gra FS to top FS to bottom Elev change Distance Gradient	# 9% 5 9% 70 ₹ 9% 30 ₹ 9% 30 9% dient #.10 5.50 1.40 129 1.00 70	trout spawning:	191 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ft ²
22	Reach Hab Pool Run Riffle POW Surface tur Instream of Undercut b Overhangir	Fisibulence bject ank	cterization es % % % % % h Cover	20 % 50 % \$5 %	fines (< 2mm sand (2-7mm gravel (7-75i cobble (75-3 boulder (>30 bedrock	Substrate type of 1/16") of 1/16-1/4") mm or 1/4-3") comm or 3-12") comm or >12") Gra FS to top FS to bottom Elev change Distance Gradient	# 9% 5 9% 70 ₹ 9% 30 ₹ 9% 30 9% dient #.10 5.50 1.40 129 1.00 70	trout spawning:	191 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ft ²
223	Reach Hab Pool Run Riffle POW Surface tur Instream of Undercut b Overhangir	sitat Chara labitat type 35 35 25 Fish bulence bject ank	cterization es % % % % % h Cover	20 % 50 % \$5 %	fines (< 2mm sand (2-7mm gravel (7-75i cobble (75-3 boulder (>30 bedrock	Substrate type of 1/16") of 1/16-1/4") mm or 1/4-3") comm or 3-12") comm or >12") Gra FS to top FS to bottom Elev change Distance Gradient	# 9% 5 9% 30 ₩ 9% 30 % 30 % 60 1.40 1.29	trout spawning:	191 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ft ²

Th	omas R.	Payne &	Associates	s Electro	fishing Surv	ey - Habita	t Characterist	ic Data Form	/
Stream:	MAMI	MOTH !	CRK	County:	Moho		-	10 /12 /2	<u> </u>
Reach:	DH			Est. Q:	120 ds		Page:	.1 of	
Air Temp.:		@	H20 Temp.:		@	_	Conductivity:	μS/c	<u></u>
Air Temp		@	H20 Temp.:		@	_	Specific Cond.:		m
Longth:	2-	2 🔿			gradient:		Salinity:	ppt	
2 A	1=75	TOP/B01	70m / + 6	BLOCK SI	DE CHE BO	778M	D.O.:	mg/l	L
						1		% Satu	
(n)/m	(ft) m	=	(ft		Mean Depth	1			
Distance	Width	1/4 Depth	1/2 Depth	3/4 Depth	Mean Deptin	GPS Coord.			
<u> </u>	10.3	1.20	1.25	0.95		0,00000			
30	8.0	0.60	1.10	1.40 0.85		1			
60	9.8	0.75	1.10	1.25		1			
90	12.4	0.90	1.80	10.90	-	1 .			
IZO	11.5	0.95	1.10	0.45	 	┪ .		ACLOSS	
150	11.2	0.85	0.90	-0.90		Photos:	1 cover 12	TOP DOWN	
180	12.1	0.70		1.75	-	1 ''''''		AUDIMAD UP	
210	12.5	1.40	2.20	1.20	 	1		٧N	
240	11.9	1.30	1.40	2.65		1	(D) BOTTOM	م ن	
270	13.8	2.10	3.15	1.55		1	(3) Across	C BOTTOM	
300	13.6	1.80	1.30	1.85		1	200		
320	14.6	1.45	1.80	1-03		1			
		<u> </u>	<u> </u>			7			
Mean Width	11.8	3ft	Mean Depth	1.34	ft		2.45		
Mean width			1			4	-	9.4	
Total Area	3,77	-8.67ft ²	Total Volume	5,06	09.71 ft3		Maximum Depth	3.40	
Reach Hab	oitat Chara	cterization	:			 -			
	labitat type		1	<u> </u>	Substrate typ	oes	1		
			1				1		
Poo		15 %			nm or 1/16")				
Rur		3 %	4		nm or 1/16-1/4")	10 % 3.50 %	trout enawning	484	ft ²
	<u> </u>		4		75mm or 1/4-3")				
POW	1 <u>\$</u>	%	4		5-300mm or 3-12")	5 %	-	10/10	
		%	4	1	·300mm or >12")			64	
<u> </u>			J	bedrock		ø%	4	10 194	
							=	90 50	
				_		adient	1 ,	50 444	
	Fis	h Cover]	F3 to top		CAN'T	SEE	
Surface tur	rbulence		10 %		FS to bottom		201+		
Instream o			20 %		Elev change		4 ~ 67		
Undercut b	•		Ø %	5	Distance				
		on (<48")	454 %		Gradient		1		
				•					

Thomas R. Payne & Associates Electrofishing Survey - Habitat Characteristic Data Form Date: 10/13 /2006 Stream: MAMMOTH CRK County: MONO Page: ___1 of__ Reach: DL Est. Q: Conductivity: μS/cm H20 Temp.: Air Temp.: Specific Cond.: μS/cm H20 Temp.: Air Temp.: __ gradient: ~2 Salinity: ppt Length: mg/L D.O.: % Saturation D.O.: (ft/ph (ft //m (ft/m pH: 1/2 Depth 3/4 Depth Mean Depth Width 1/4 Depth Distance 27.B GPS Coord. 0.7 0.7 0.35 20.5 1.70 1.90 1.60 15.0 1.40 1.45 0.2 60 90 1.05 0.15 20.1 1.70 120 18.0 1-10 1.00 1.50 150 0.95 1.00 16.1 Photos: O COUER (2) BOTTOMX 0.60 0.65 180 13.5 1.40 3) BOTTOM UP 0.40 0.40 210 222 0.80 MID DOWN 5 MID UP 0.85 1.05 240 17.4 1.80 TOP DOWN 270 0.95 040 15.4 1.50 TOP X 294 22.9 0.5 0.55 1.25 0.97 ft 19.0 Ft Mean Depth Mean Width 5,431.05 ft3 2.20 5,583,33 ft Maximum Depth Total Volume Reach Habitat Characterization: Substrate types / **Habitat types** fines (< 2mm or 1/16") 0 % 20 Pool % sand (2-7mm or 1/16-1/4") 2€ Run trout spawning: ____ /2つ gravel (7-75mm or 1/4-3") 20 30 Riffle % ã**≨** POW cobble (75-300mm or 3-12") 50 % boulder (>300mm or >12") % bedrock Gradient FS to top Fish Cover FS to bottom % Surface turbulence 35 % Elev change Instream object % Distance Undercut bank Gradient Overhanging vegetation (<48")

Th	omas R.	Payne &	Associate	s Electroi	fishing Sur	/ey - Habita	t Characterist	tic Data Fo	orm
Stream:	Man	MOTH		County:	Mono		Date:	10 112	12006
	EH			Est. Q:		CFS	Page:	.1 of	
Air Temp.:		@	H20 Temp.:	7.2°C/45.4	<u>6</u> 1600	_	Conductivity:	86.7	μS/cm
Air Temp.:		@	H20 Temp.:	7.0°C	@ 1815	_	Specific Cond.:	131.0	μS/cm
		- 2				: 	Salinity:	0.1	ppt
			<u> </u>		. •			9.41	mg/L
						7		78.4 %	
(ft /)m	(ft) m	4/4 D 45		1 //m	Mann Donath	-1		7.5	Saturation
Distance O		1/4 Depth	1/2 Depth 0 45	3/4 Depth	Mean Depth	GPS Coord.			
ļ	23.0			0.60		HGF5 Coola.			
30	20.3	1.40	0.70	1.10		1			***
90	17,2	0.35	0.90	0.70		1		· · · · · · · · · · · · · · · · · · ·	
120	14.6	0.55	1.00	1.05		1			
150	17.3	0.45	1.30	1.10		1			
180	18.2	0.90	1.15	120		Photos:	Design D-	of Dow	N
z10	23.3	0.70	0.60	0.50			3) view of		
240	22.0		0.55	0.50		1 7	DACKOSS +		
270	15.8	1.35	1.10	0.60] 3	DMIL UP @		
4	15,0	1.20	1.00	0,40]	(8) BOTTOM		
2817						_	(9) Across	B0775M	
						4			
Mean Width	18.	3 ft	Mean Depth	0.82	ft				
Total Area	5,15	5,07ft ²	Total Volume	4,23	3.41 ft3		Maximum Depth	2.00	ු
Reach Habi	itat Charac	terization:	:						
Ha	abitat type	S			Substrate typ	es			
Pool		5 %		fines (< 2mr	n or 1/16")	5 ≠ %	BW POOL		
Run	7				n or 1/16-1/4") /S	%]		
Riffle	7	5 %			imm or 1/4-3")	35 %	trout spawning:	860	ft ²
POW				cobble (75-	300mm or 3-12")	45 %			
	· · · · · · · ·	%		boulder (>3	00mm or >12")	5 %	20,16	= 340	
				bedrock		ø%		200 300	
-							j	٥٥٥	
					Gra	dient	1		
	Fish	Cover]	PS to top		CAN'T =		
Surface turb	oulence	·	16 %		FS to bottom			CE	
Instream ob	ject		/0 %		Elev change				
Undercut ba	ank		15 15 %		Distance /	\sim			
Overhanging	g vegetatio	n (<48")	35 3 0 %		Gradient /		ļ		

Thomas R. Payne & Associates Electrofishing Survey - Habitat Characteristic Data Form

	4.1	C = 1.1	0	47- 18		Date:	10/11	12006
Stream:	MAMMOTH	CRK	County:	MONO		Duto		
Reach:	EL		Est. Q:	N20 G	<u>'s</u>	-	<u>.1 c</u>	
Air Temp	16° C@1235	H20 Temp.:	48.9°F	2 1225		Conductivity:	125.4	μS/cm
	@	H20 Temp.:	9,100 €	n 1174		Specific Cond.:	180.2	· μS/cm
Length:		Tizo Tompii		gradient:	0,53%	Salinity:	0.1	
Lengin.						D.O.:	6.78	mg/L
(a) 1 m	· (#) m	(fr)m			-		% Saturation

€d/m	(ft) m		(ft) m	
Distance	Width	1/4 Depth	1/2 Depth	3/4 Depth	Mean Depth
0	15.3	1.7o	1.60	1.75	
30	13.4	1.25	1.30	1,30	
60	15.6	0,75	1.50	1.75	
90	17.7	0.90	0.75	0.60	
120	13,6	\$1.70	1.50	1.05	
150	15.2	2.0	1.25	0.40	
180	19.6	0.95	0.50	0.80	
210	14.9	0.25	1.70	1.10	
240	18.9	1.10	1.05	0.70	
270	19.9	0.85	0.30	0.50	
303	20,5	1.10	1.00	0.90	<u> </u>
	L	<u></u>	<u> </u>		
Mean Width	. 16.	8 ft	Mean Depth	1.00) ft
Total Area	5,08	34.89ft ²	Total Volume	5,50	24. 04 ft3

Photos:	1) covere
	OACLOSS BOTTON
	3 Borromut
	A MID DOWN & MID UP CHE
	@ MID of @ 240'
	(7) TOP - ACROSC
	B Tol Down
	•

Maximum Depth 3.25

trout spawning:

Reach Habitat Characterization:

Habi	tat types	
Pool	35	%
Run	55	%
Riffle	20	%
POW		%
		%

Surface turbulence Instream object Undercut bank

Overhanging vegetation (<48")

Fish Cover

Substrate typ	es	
fines (< 2mm or 1/16")	10	%
sand (2-7mm or 1/16-1/4")	15+	%
gravel (7-75mm or 1/4-3")	80	%
cobble (75-300mm or 3-12")	/0	%
boulder (>300mm or >12")	-5	%
bedrock	<u> </u>	%

Gradi	ent
FS to top	6.40
FS to bottom	8.00
Elev change	1.60
Distance	303
Gradient	0.53%

TOP 2 Cross from green yste BOTTEM (CHANCE RANCH FENCE LINE

Appendix B

October 2006 Electrofishing Fish Data Sheets

[∨] Stream:	Man	moth	Creek	SSOCIATES Ele	FON	<u> </u>	_ Date:	1011	3-12006
Reach:	B17_			Est. Q:	~ 100	FS	_ Page:	1	of C
Air Temp.:	15°C	@ 1570	H20 Temp.:	€.2°C	@ 1505	`\	Conductivity:	125.1	microSiemens
				1 /4" mesh			ecific Cond.:	183.8	microSiemens
	gth:						Salinity:	0.1	ppt
	cker Type:			8.5°	Ce 17	40 Ws	D.O.:	5.48	ppt mg/L
			1 GIA	ESTIM S	AL PWALLA		_	42.0	> % saturation
-ersonner.	SHOCKERS.	CINIC	7 (3 211)	<u> </u>		40 tien	– pH:	7.5	
	-						Photos:		1.
	Netters:	SEAN	J THOBAR	EN STE	JE ECO	<u> इन्दर</u>			
							_		
Shocker 💃	Cihdy	Tim							4-,
Model ે	12A	11A							
Battery ID	Lewis	300					 		11.
Voltage: Frequency:	300 60	60					†		 '-
1st Pass	2336								
2nd Pass									
3rd Rass		1883							
4th Pass									
5th Pass]	ŀ	ľ		1		
THE PERSON NAMED IN	7								
	Lengths a	re fork le	ngths or t	otal lengths	in millime	ters	Weight	s are in	and dust
							Weight	s are in	ans dust
	Species	Length 252	Weight	Socia Sample	ut in ara			s are in	e dut
Pass#	Species	Length 252 2/3	(Weight) 1/4,9 68,9	Socia Sample 178.7 107.2	ut in ara			s are in	see dut
Pass#	Species RRN RBT	252 2/3 201	(Weight) 1/4,9 68.9	178.7 107.2 101.1	ut in gra	ms	Notes		
Pass#	Species	Length 252 2/3	Weight) 114.9 68.9 65.0 114.1 96.5	Sools Sample 178.7 107.2 101.1 177.4 150.1	wtingra BRN BRK	ms /52-39	Notes	92 ±19	SE = 9.56
Pass#	Species BRN 1) RBT BRN 11	Length 252 2/3 201 249 245 67	(Weight) 114,9 65.0 114.1 96.5	Socia Cample 178.7 107.2 101.1 177.4 150.1 3.0	Wtingra BRN BRK BR7	/52-33 1-0- 23-1-	Notes 1-29 N=1 0 N=0-4 N	92±19 / = 39±5	SE = 9.56 SE = 2.46
Pass#	Species RRN 1) RBT RRN 11	Length 252 2/3 201 249 245	(Weight) 1/4,9 68.9 65.0 1/4.1 96.5 1.9	Socia Sample 178.7 107.2 101.1 177.4 150.1	Wtingra BRN BRK BR7	/52-33 1-0- 23-1-	Notes 1-29 N=1 0 N=0-4 N	92±19 / = 39±5	SE = 9.56
Pass#	Species RRN RBT RBT RBT BRN II	Length 252 2/3 201 249 245 67 49 80 81	Weight) 1/4,9 68,9 65.0 114.1 91.5 1.9 1.0 3,5- 3,8	Socia Cample 178.7 107.2 101.1 177.4 150.1 3.0 1.6 5.4 5.9	Wtingra BRN BRK BR7	/52-33 1-0- 23-1-	Notes 1-29 N=1 0 N=0-4 N	92±19 / = 39±5	SE = 9.56 SE = 2.46
Pass#	Species RRN D RBT P RBT RBT RBT RBT RBT RBT	Length 252 2/3 201 249 245 67 49 80 81	Weight) 1/4,9 68,9 65.0 114.1 91.5 1.9 1.0 3,5- 3,8 2.7	Sol C sple 178.7 107.2 101.1 177.4 150.1 3.0 1.6 5.4 5.9 4.2	Wtingra BRN BRK BR7	/52-33 1-0- 23-1-	Notes 1-29 N=1 0 N=0-4 N	92±19 / = 39±5	SE = 9.56 SE = 2.46
Pass#	Species RRN D RBT P RBT P RBT RBT P RBT RBT	Length 252 2/3 201 249 245 67 49 80 81 74 83	Weight) 1/4,9 68,9 65.0 114.1 91.5 1.9 1.0 3,5- 3,8 2.7 4.1	Sold Supple 178.7 107.2 101.1 177.4 150.1 3.0 1.6 5.4 5.9 4.2 6.4	Wtingra BRN BRK BR7	/52-33 1-0- 23-1-	Notes 1-29 N=1 0 N=0-4 N	92±19 / = 39±5	SE = 9.56 SE = 2.46
Pass#	Species RRN D RBT P RBT RBT RBT RBT RBT RBT	Length 252 2/3 201 249 245 67 49 80 81	Weight) 1/4,9 68,9 65.0 114.1 91.5 1.9 1.0 3,5- 3,8 2.7	Sol C sple 178.7 107.2 101.1 177.4 150.1 3.0 1.6 5.4 5.9 4.2	Wtingra BRN BRK BR7	/52-33 1-0- 23-1-	Notes 1-29 N=1 0 N=0-4 N	92±19 / = 39±5	SE = 9.56 SE = 2.46
Pass#	Species RRN D RBT RBT RBT RBT RBT RBT RBT	Length 252 213 201 249 245 67 49 80 81 74 83	Weight) 1/4,9 68,9 65.0 114.1 91.5 1.9 1.0 3,5- 3,8 2.7 4.1 2.3	Solo Comple 178.7 107.2 101.1 177.4 150.1 3.0 1.6 5.4 5.9 4.2 6.4 3.6 4.2 2.3	Wtingra BRN BRK BR7	/52-33 1-0- 23-1-	Notes 1-29 N=1 0 N=0-4 N	92±19 / = 39±5	SE = 9.56 SE = 2.46
Pass#	Species RRN N RBT RBT RBT RBT RBT RBT RBT	Length 2572 213 201 249 245 67 49 80 81 74 83 67 72 64 70	Weight) 1/4,9 68,9 65,0 114.1 9(.5 1.9 1.0 3,5- 3,8 2.7 4.1 2.3 2.7 1.5	Solo Comple 178.7 107.2 101.1 177.4 150.1 3.0 1.6 5.4 5.9 4.2 6.4 3.6 4.2 2.3 4.2	Wtingra BRN BRK BR7	/52-33 1-0- 23-1-	Notes 1-29 N=1 0 N=0-4 N	92±19 / = 39±5	SE = 9.56 SE = 2.46
Pass#	Species RRN N RBT RRT RBT BRN N RBT BRN RBT BRN RBT BRN	Length 2572 273 201 249 245 67 49 80 81 74 83 67 72 64 70 73	Weight) 1/4,9 68,9 65,0 114,1 96,5 1,9 1,0 3,5- 3,8 2,7 4,1 2,3 2,7 1,5 2,7	Solo Comple 178.74 101.1 177.4 150.1 3.0 1.6 5.4 5.9 4.2 6.4 3.6 4.2 2.3 4.2 4.2	Wtingra BRN BRK BR7	/52-33 1-0- 23-1-	Notes 1-29 N=1 0 N=0-4 N	92±19 / = 39±5	SE = 9.56 SE = 2.46
Pass#	Species RRN PBT RBT RBT RBT RBT RBT RBT RBT	Length 2572 273 201 249 245 67 49 80 81 74 83 67 72 64 70 73	Weight) 1/4.9 68.9 65.0 114.1 96.5 1.9 1.0 3,5- 3.8 2.7 4.1 2.3 2.7 1.5 2.7 3.1	Sold Comple 178.7 107.2 101.1 177.4 150.1 3.0 1.6 5.4 5.9 4.2 6.4 3.6 4.2 2.3 4.2 4.2 4.4 4.5	Wtingra BRN BRK BR7	/52-33 1-0- 23-1-	Notes 1-29 N=1 0 N=0-4 N	92±19 / = 39±5	SE = 9.56 SE = 2.46
Pass#	Species RRN RBT RBT RBT RBT RBT RBT RBT	Length 2572 273 201 249 245 67 49 80 81 74 83 67 72 64 70 73 72 56	Weight) 1/4.9 68.9 65.0 114.1 91.5 1.9 1.0 3.5 3.8 2.7 4.1 2.3 2.7 1.5 2.7 3.1 2.9 1.2	Sold Comple 178.74 101.1 177.4 150.1 3.0 1.6 5.4 5.9 4.2 6.4 3.6 4.2 2.3 4.2 4.2 4.6 4.5 1.9	Wtingra BRN BRK BR7	/52-33 1-0- 23-1-	Notes 1-29 N=1 0 N=0-4 N	92±19 / = 39±5	SE = 9.56 SE = 2.46
Pass#	Species RRN RBT RBT RBT RBT RBT RBT RBT	Length 252 2/3 201 249 245 67 49 80 81 74 83 67 72 64 70 73 72 56 72	Weight) 1/4,9 68,9 65,0 114.1 96,5 1.9 1.0 3,5- 3.8 2.7 4.1 2.3 2.7 1.5 2.7 1.5 2.7 3.1 2.9 1.2	Solo Comple 178.7 107.2 101.1 177.4 150.1 3.0 1.6 5.4 5.9 4.2 2.3 4.2 2.3 4.2 4.8 4.5 1.9 5.3	Wtingra BRN BRK BR7	/52-33 1-0- 23-1-	Notes 1-29 N=1 0 N=0-4 N	92±19 / = 39±5	SE = 9.56 SE = 2.46
Pass#	Species RRN RBT RBT RBT RBT RBT RBT RBT	Length 252 2/3 201 249 245 67 49 80 81 74 83 67 72 64 70 73 71 56 72 74	Weight) 114.9 65.0 114.1 96.5 1.9 1.0 3.5 3.8 2.7 4.1 2.3 2.7 1.5 2.7 1.5 2.7 3.1 2.9 1.2	Sold Comple 178.7 101.1 177.4 150.1 3.0 1.6 5.9 4.2 6.4 3.6 4.2 2.3 4.2 4.8 4.5 1.9 5.3 4.5	Wtingra BRN BRK BR7	/52-33 1-0- 23-1-	Notes 1-29 N=1 0 N=0-4 N	92±19 / = 39±5	SE = 9.56 SE = 2.46
Pass#	Species RRN RBT RBT RBT RBT RBT RBT RBT	Length 252 2/3 201 249 245 67 49 80 81 74 83 67 72 64 70 73 72 56 72 74	Weight) 1/4,9 68,9 65,0 114.1 96,5 1.9 1.0 3,5 3.8 2.7 4.1 2.3 2.7 1.5 2.7 1.5 2.7 3.1 2.9 1.2 3.4 2.9 3.3	Sold Comple 178.74 101.1 177.4 150.1 3.0 1.6 5.4 5.9 4.2 6.4 3.6 4.2 2.3 4.2 4.8 4.5 1.9 5.3 4.5 5.1	Wtingra BRN BRK BR7	/52-33 1-0- 23-1-	Notes 1-29 N=1 0 N=0-4 N	92±19 / = 39±5	SE = 9.56 SE = 2.46
Pass#	Species RRN RBT RBT RBT RBT RBT RBT RBT	Length 252 2/3 201 249 245 67 49 80 81 74 83 67 72 64 70 73 71 56 72 74	Weight) 114.9 65.0 114.1 96.5 1.9 1.0 3.5 3.8 2.7 4.1 2.3 2.7 1.5 2.7 1.5 2.7 3.1 2.9 1.2	Sold Comple 178.7 101.1 177.4 150.1 3.0 1.6 5.4 5.9 4.2 6.4 3.6 4.2 2.3 4.2 4.8 4.5 1.9 5.3 4.5 5.1 2.3 7.2	Wtingra BRN BRK BR7	/52-33 1-0- 23-1-	Notes 1-29 N=1 0 N=0-4 N	92±19 / = 39±5	SE = 9.56 SE = 2.46
Pass#	Species RRN RBT RBT RBT BRN II RBT BRN RBT RBT	Length 252 213 201 249 245 67 49 80 81 74 83 67 72 64 70 73 71 56 72 74 86	Weight) 1/4,9 68,9 65,0 114.1 96,5 1.9 1.0 3,5- 3.8 2.7 4.1 2.3 2.7 1.5 2.7 1.5 2.7 3.1 2.9 1.2 3.4 2.9 3.3 1.5	Sold Comple 178.74 101.1 177.4 150.1 3.0 1.6 5.9 4.2 6.4 3.6 4.2 2.3 4.2 4.8 4.5 1.9 5.3 4.5 5.1 2.3	Wtingra BRN BRK BR7	/52-33 1-0- 23-1-	Notes 1-29 N=1 0 N=0-4 N	92±19 / = 39±5	SE = 9.56 SE = 2.46

Thomas R. Payne & Associates Electrofishing Survey - Fish Data Form

Stream: Manmoth Creek Date: 10/1/5/12006 Page: 2 of 6

BH Proms Reach: (continued) BENNY Species Length Weight Scale Sample Pass# Notes RBT 36.1 56.1 161 BRN 100.9 213 64.9 149.9 235 96,4 31 11 93 5.7 8.9 VI 78 RBT 45 0.7 5.1 BRN 75 3, **3** 6.4 5.9 3.8 80 5.4 80 3.5 5.4 32 4.5 7.0 73 3.9 2,5 11 76 4.5 BROOK 2.9 73 3.7 BRN 2.4 3.7 2,4 4.8 3.6 RBT 0.7 1.1 0.9 0.6 5.3 BRN 3,4 74 3,2 5.0 79 5.6 4.7 3.0 5.1 82 3.7 5.8 6.7 6.7 4.3 80 4.0 6.2 81 3,7 5.0 6.5 81 4,2 8.4 91 5.4 RBT 62 1.4 Z.2 BRN 80 4,0 6.2 74 3.0 4.7 77 $t_{\rm I}$ 2.9 4.5 70 2.3 3.6 65 14 2.1 3.3 63 2.3 3.6 11 80 3,6 5.6 RBT 52 1.0 1.6 BRN 82 4.3 6.7 6.2 80 4,0 U 83 4.5 7,0 78 4.2 6.5

Stream: Mammoth Creek Date: 1011512006 Page: 3 of 6

BH GRAMS Reach: (continued) Scale Sample Pass# Species Length Weight Notes 3.0 BRN 77 4.7 80 6.2 410 79 5.9 3,8 5.4 RBT 1.0 1.6 BRN 205-64.9 100.9 RBT 176 65.5 274 301 251.6 BRN 161.8 280.1 180.1 279 130.9 203.6 2.8 4.4 4.1 81 6.4 83 7.0 4,5 65 RBT 2.0 3.1 BIZN 5.1 80 <u> 3.6</u> 5.6 87 4.4 6.8 5.9 82 80 2,1 3.3 3 63 82 4,2 6.5 89 7.5 4.8 1.6 RBT 59 2.5 57 1,3 2.0 BRO 149 24.6 38.3 RBT 48 mort. 0.8 1.2 2.3 57 /. 5° BRN 5.4 80 2,3 RBT 5-5-1.5 77 3.0 4.7 BRN 82 3,3 5.1 3. z H78 5.0 83 4.4 6.8 11 70 2.6 4.0 11 84 5.1 7.9 11 78 3.2 5.0 71 2.9 4.5 81 3,6 5.6 75-3,2 5.0 7.5 3.0 4.7 36 4.7 7.3 67 2.0 3.1 3.4 RBT 67 A. 2 0.B 34.7 44 0.5 BRN 147 22,3

(dut) penny wt wt in grams)

Thomas R. Payne & Associates Electrofishing Survey - Fish Data Form

Stream:	Mar	nmoth	Creek	Date:	/01/51/2006 Page: 4 of 6
Reach:	BH		PENNY	GRAMS	(continued)
Pass#	Species	Length	Weight	Septe Compile	Notes
157	BRN	160	29.3	45.6	
	11	75-	3.0	4.7	15t Pass
	4	81	.3.7	5.0	Total - 126
	20	77	3.3	5.1	
	RBT	56	0.9	1.4	1213T-23
1	T_1	51	1.1	1.7	BKN-10295/
	BRN	80	_3.9	6.1	Bisole - 1
	RBT	65	2.0	3.1	
	u.	56	1,2	1.9	
	BRN	79	3.6	5.6	*****
	RBT	<u>ょ</u>	0.9	1.4	11 11 11 11 11 11 11 11 11 11 11 11 11
\(\sqrt{1}					
2111	BRN	163	37,0	48.2	
	RBT	54	1.4	2.2	
	71	117	11.4	17.7	2 ru Pass
	BRN	214	63.1	129.2	Total - 49
	/1	218	79.1	123.0	, , ,
	/ 1	73	3.1	4.8	KBT - 10
	1)	149	22,6	35.1	BRN - 39
	RBT	50	1,1	1.7	
	BRN	<u>83</u>	4,1	6.4	
 	/1	91	5.1	7.9	
· · · · · · · · · · · · · · · · · · ·	- 11	77	3.2	5.0	126-49- 32
<u> </u>	//	99	5.6	8.7	120-71-32
	- /·	78 70	3.6	5.6 4.0	
	11	S5	2.6 4.9	7.6	
	11	70	2.6	4.0	
	RBT	65	1.8	2.8	
	13R~	82	4,0	6.2	
	/3/6/~	74	3,0	4.7	······································
	f i	73	3.0	4.7	
	71	79	4.0	6.2	
	RBT	46	0.8	1.2	
	11	47	0.8	1.2	MANUAL
	BRN	7.1	2.5	3,9	
	11	80	3,5-	5.4	
	7:	69	2.6	40	
	RBT	66	2,1	3.3	
	BRN	78	3,1	4.8	
	/1	77	3,5	5.4	
	11	85-	5.3	8.2	
	(1)	77	.3.8	5.9	
	11	71	2,7	4.2	
	11	78	3.6	5.6	
			4	4	<i>e</i> •

Penny wts wtin grams = (penny wt x 1.55521)

Stream: Manmoth Creek Date: 10 1 15 1 2006 Page: 5 of 6

Reach: BH COUNTY CRAMS (continued)

Reach:	<u> </u>		RENTY	3RAMS	(continued)
Pass#	Species	Length	Weight	Scale Sample	Notes
2 nd	RBT	5-6	1,4	2,2	
	11	53	1.2	1.9	
	BRN	76	3.6	5.6	
	*1	80	3.8	5.9	
	11	85-	4.3	6.7	
	n	72	2.5	3.9	
	11	77	3,2	5.0	
	1)	7 s	3,4	5.3	
	/1	70	2.2	3.4	
	11	87	5.4	8.4	
	11	88	4.5	7.0	
	1 (80	4. 2	6.5	
	RBT	61	1.6	2.5	
	BIRN	80	3,5	5.4	
	t i	81	4.1	6.4	·
	4 a	93	4,0	6.2	
~	and the second		And the second section is	The same and the same of the s	
314	BRN	80	3,8	5.9	
	. 11	7-9	3, 3	5.1	
	11	78	3,2	5.0	
	12	92	4.3	6,7	
	11	74	3.5	5.4	(3rd Puss
		77	3,6	5.6	Total - 33
	RBT	38	0.3	0.5	B12N-29
	BRN	88	4.7	7.3	RBT-4
	17	४०	4,2	6,5	
) i	76	3,5	5.4	***************************************
	/1	77	3.1	4.8	
	RBT	4/5	0.6	0.9	
İ	BRN	84	4.3	6.7	mort,
ļ	RBT	45	0.7	1.1	
	BRN	62	1.7	ها, 2	
<u> </u>		85	3,9	6.1	
	RBT	5-3	/. /	1.7	
ļ 	1)	46	0.7	1.1	
	13RN	<i>e</i> 3	4.0	6.2	
\vdash	11	82	3,8	5.9	
\vdash	11	85	4,5	7.0	Advance of the Control of the Contro
\vdash		68	1,9	3.0	
	7.7	<i>B</i> 5	3.4	5.3	
<u> </u>		70	2.9	4.5	
 	- 11	84	4.0	6.2	
\vdash	ti .	79	3.5	5.4	
\vdash	11	81	3.7	5.8	
	13	77	3,2	5.0	· · · · · · · · · · · · · · · · · · ·

(DWT) PENNY

WT IN GRAMS = DWTX 1.55521

Stream: Mammoth Creek Date: 10 1 15-1 2006 Page: 6 of 6

Reach: BH OGNY GRAMS (continued)

Reach:	BH		ORNNY	GRAMS	(continued)
	Species	Length	Weight	Seale Sample	Notes
Pass# 3 HSL	BRN	80	3. 4	5.3	
	11	72	2.7	4.2	
	- U	74	2.7	4.2	
	11	81	4.1	6.4	
	41	89	4.1 571	6.4 7.9	
-			<u> </u>		
	,				
 					
-					
	 				
	<u> </u>				
	 		 		
	 	<u> </u>			
	<u> </u>				
		<u> </u>	<u> </u>		
	 				
					
	<u> </u>				
	 				
					
	 	 			
	 	 	\vdash		
	 	 	 	+	
	 	+			
<u> </u>	 	 			
 		 			
— —		 	-		
	 	 	 	 	
	 	 	+	+	
·			<u> </u>		

Stream:	Ma	immoth	Cheele	County:	Mono		Date:	101/4	112006
Reach:	BL	i · · · · ·		- Est. Q:			Page:	1 0	
Air Temp.:	11°C	@ 1410	H20 Temp.:	Est. Q: 46,4°F 7.8°C	@ 1405				microSiemens
Blocknets:	Ton	/ Rott	20'	1/4" much					microSiemens
	gth:					•		0.1	
	cker Type:			<u></u>				6.83	
			& SEA	J					% saturation
1 0,00	0,100.10.		·	,			pH:	8.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Netters:	Ster	re, Cino	14					
				<u> </u>					
	1 _		·		· · · · · · · · · · · · · · · · · · ·				τ
Shocker	Sean	Tim	ļ						
Model	12A Columbia	11A Klatte							
Battery ID Voltage:	200	300							
Voltage: Frequency:	60	60		1					
	1115	1355	ļ. <u></u>	 					
	1045	482 ?	- malfunc	tin					
	845	941							
MAN AND A	<i>- '</i>	1 1							-
	engths a	re fork le	ngths or t	otal lengths	in millimet	ters	Weights	are in g	rams
L Pass#	engths a	re fork le Length	engths or t Weight	otal lengths Scale Sample	in millimet	ters	Weights Notes	s are in gı	rams
L	Species BRN	Length 174	Weight 67.2		in millimet	ters		s are in g	rams
Pass#	Species BRN	Length 174 /40	Weight 67, 2 34, /		in millimet	ters			rams
Pass#	Species BRN	Length 174 140 266	Weight 67.2 34.1 206.9		in millimet	ters		s are in gr	
Pass#	Species BRN // // // // // // // // //	Length 174 /40	Weight 67, 2 34, /					I Pars	13 4
Pass#	Species BRN 11 11 11 RBT	Length 174 140 266 284 244 58	Weight 67.2 34.1 206.9 215.4 144.3 2.7		in millimet			It Pass BRN -	13
Pass#	Species BRN 11 11 RBT BRN	Length 174 140 266 284 244 58 78	Weight 67.2 34.1 206.9 215.4 144.3 2.7 5.9					It Pass BRN -	13 4
Pass#	Species BRN 11 11 11 RBT	Length 174 140 266 284 244 58	Weight 67.2 34.1 206.9 215.4 144.3 2.7		m or	<i>†</i> ,		It Pass BRN -	13 4
Pass#	Species BRN 11 11 11 RBT BRN BRN 11 RBT	Length 174 149 266 284 344 58 78 157 252 233	Weight 67.2 34.1 206.9 215.4 144.3 2.7 5.9 48.8 224.9 14/13		Mor	t,	Notes	Ben-	13 4
Pass#	Species BRN 11 11 11 RBT BRN 11 RBT B12NI RBT	Length 174 140 266 284 244 58 78 157 252 233 259	Weight 67.2 34.1 206.9 2.15.4 144.3 2.7 5.9 48.8 224.9 14/13 205.1		Mor	t,	Notes	Ben-	13 4
Pass#	Species BRN 11 11 11 RBT BIZNI RBT BRN BRN BRN BRN BRN BRN BRN	Length 174 140 266 284 244 58 78 157 252 233 259	Weight 67.2 34.1 206.9 215.4 144.3 2.7 5.9 48.8 224.9 141.3 205.1		Mor	t,		Ben-	13 4
Pass#	Species BRN 11 11 11 RBT B12NI RBT BRN 11 CRN 11 CRN 11 CRN 11 CRN 11 CRN 11 CRN CRN	Length 174 140 266 284 244 58 78 157 252 233 259 132 45	Weight 67.2 34.1 206.9 215.4 144.3 2.7 5.9 48.8 224.9 141.3 205.1 26.1 5.3		Mor	t,	Notes	Ben-	13 4
Pass#	Species BRN 11 11 11 11 RBT BIZNI RBT BRN 11 III III III III III III II	Length 174 140 266 284 244 58 78 157 252 233 259 132 75	Weight 67.2 34.1 206.9 2.15.4 144.3 2.7 5.9 48.8 224.9 141.3 205.1 26.1 5.3		Mor	t,	Notes	Ben-	13 4
Pass#	Species BRN 11 11 11 RBT BRN	Length 174 140 266 284 244 58 78 157 252 233 259 132 75 216 51	Weight 67.2 34.1 206.9 215.4 144.3 2.7 5.9 48.8 224.9 /4/13 205.1 26.1 5.3 1/0.6 € 1.2		Mor	t,	Notes	Ben-	13 4
Pass#	Species BRN 11 11 11 11 RBT BIZNI RBT BRN 11 III III III III III III II	Length 174 140 266 284 244 58 78 157 252 233 259 132 75	Weight 67.2 34.1 206.9 2.15.4 144.3 2.7 5.9 48.8 224.9 141.3 205.1 26.1 5.3		Mor	t,	Notes	Ben-	13 4
Pass# / 51	Species BRN 11 11 11 RBT BRN 11 BRN 11 RBT BRN	Length 174 140 266 284 58 78 78 157 252 233 259 132 75 216 51 246	Weight 67.2 34.1 206.9 215.4 144.3 2.7 5.9 48.8 224.9 141.3 205.1 26.1 5.3 1/0.6 1.2		Mor	t,	Notes	Ben-	13 4
Pass#	Species BRN 11 11 11 RBT BRN 11 BRN 11 RBT BRN	Length 174 140 266 284 58 78 78 157 252 233 259 132 75 216 51 246	Weight 67.2 34.1 206.9 215.4 144.3 2.7 5.9 48.8 224.9 141.3 205.1 26.1 5.3 110.6 1.2 171.3 257.4		Mor	t,	Notes	BRN- BRN- RBT-	13 4
Pass# / 51	Species BRN 11 11 11 RBT BRN 11 RBT BRN 11 RBT BRN	Length 174 149 266 284 344 58 78 78 757 252 233 259 132 75 216 51 246	Weight 67.2 34.1 206.9 215.4 144.3 2.7 5.9 48.8 224.9 14/13 205.1 26.1 5.3 1/0.6 € 1.2 171.3 257.4		Mor	t,	Notes	BRN- BRN- RBT-	13 4
Pass# / 51	Species BRN 11 11 11 RBT BRN 11 BRN 11 RBT	Length 174 149 266 284 58 78 157 252 233 257 132 75 216 51 246 301	Weight 67.2 34.1 206.9 215.4 144.3 2.7 5.9 48.8 224.9 141.3 205.1 26.1 5.3 110.6 1.2 171.3 257.4		Mor	t,	Notes /13 hin hend 2nd /ass BRN	1 /455 BRN - RBT-	13 4
Pass# / 51	Species BRN II II II RBT BRN II BRN II BRN II RBT RBT RBT RBT RBT RBT RBT	Length 174 149 266 284 244 58 78 157 252 233 257 132 75 216 301 212 240 76 66	Weight 67.2 34.1 206.9 215.4 144.3 2.7 5.9 48.8 224.9 14/1,3 205.1 26.1 5.3 1/0.6 1.2 171.3 257.4 128.1 165.6 6,2 3.9		Mor	t, Acty Cot (dolp	Notes Ain hend 2nd [ass Brown PB]	1 /455 BRN- RBT- 2)-HHJ	13 4
Pass# / 51	Species BRN 11 11 11 11 RBT BRN 11 BRN 11 RBT BRN 11 II	Length 174 149 266 284 58 78 78 757 252 233 257 132 75 216 301 212 240 76	Weight 67.2 34.1 206.9 215.4 144.3 2.7 5.9 48.8 224.9 14/1,3 205.1 26.1 5.3 1/0.6 1.2 171.3 257.4		Mor	t, Acty Cot (dolp	Notes /13 hin hend 2nd /ass BRN	1 /455 BRN - RBT-	13 4

Stream:	Mammoth	Creek	Date: 10 114 1 2006	Page:	2	of	2_	
Reach:	BL		(continued)					

Reacn:			141-1-1-1	Carla Carrala I	Notes
Pass#	Species	Length		Scale Sample	Notes
3 20	RBT	5-3	1,4		314 Pass
	11	67	3,6		BRN-Ø
					187-2

				Cal	13-4-D N=17+1 SE= 0.39
				100	$13-4-0$ $N=17\pm1$ $SE=0.39$ $4-1-2$ $N=7\pm3$ $SE=1.20$
				1013 /	$13-4-0$ $N=17\pm1$ $SE=0.39$ $4-1-2$ $N=7\pm3$ $SE=1.20$ $17-5-2$ $N=24\pm2$ $SE=0.89$
				ALL	17-3-2 N3 L9-2 Z DE 0.8)
				 	
		ļ			
				ļ 	
			 		
				<u> </u>	
<u> </u>			i		
		-		 	
<u> </u>			<u> </u>	 	
				ļ <u>-</u> -	
					·
<u> </u>	 	 			·
<u> </u>		<u> </u>	 		
	ļ		ļ	 	
				<u> </u>	
L					

Stream:	1 / lan								
				Est. Q:			Page:	1	of Z
						C	Conductivity: _		microSieme
				4"mesh		Spe			microSieme
	gth:						Salinity:		ppt
				BACKPA	c k		_		
									% saturati
Personnel:	Shockers:	7	STEVE !	EGGERS/	SCHIN ,	HOBAISE	nH·		% Saturati
•					<u> </u>		Photos:		
	Netters:	Tim	SALAMU	INOVICH/	CINDY	GLASE) [
							,		
Shocker	Steve	Sean							
Model	ILA	12A	<u></u>	ļ					
Battery ID		7.5							
Voltage:	300	300 60					ļ		
Frequency:	1604								
1st Pass		1621					-		
2nd Rass 3rd Pass	1234	1300							
4th Pass	14.57	1300						•	
		i e							
				1			l J		
5th Rasa	anathe a	re fork le	naths or t	otal lengths	in millime	ters	Weights	are in	grams
Şih Ress.				otal lengths		ters	Weights	are in	grams
5th Pass L Pass#	Species	Length	_າ ພ1Weight 🕻	Seale Complet		ters	Weights Notes	are in	grams
Şih Ress.	Species RBT					ters		are in	grams
5th Pass L Pass#	Species RBT	Length 64 314 228	oω1Weight ₩ 2,3 200,7 96,7	3.6 K 312.1 150.4		ters		are in	grams
5th Pass L Pass#	Species RBT // BRN	Length 64 314 228 239	2,3 2,00,7 200,7 96,7 107,1	3.6 K 312.1 150.4 166.6		ters		are in	grams
5th Pass L Pass#	Species RBT // BRN //	Length 6 H 3 1 H 2 2 8 2 3 9 9 0	2,3 2,00.7 2,00.7 96.7 107,1 6.3	3.6 K 312.1 150.4 166.6 9.8			Notes		grams
5th Pass L Pass#	Species RBT // BRN	Length 64 314 228 239	2,3 2,00,7 200,7 96,7 107,1	3.6 K 312.1 150.4 166.6			Notes Notes		grams
5th Pass L Pass#	Species RBT // BRN // // // // // // // // //	Length 64 314 228 239 90 251 230 243	wiWeight 2,00,7 96,7 107,1 6.3 117,1 87.0 109,5	3.6 K 312.1 150.4 166.6 9.8 182.1 135.3 170.3			Notes Notes St Pass BRN	- 16	grams
5th Pass L Pass#	Species RBT II BRN II II II ROT	Length 6 4 314 228 239 90 251 230 243 68	wWeight 2,3 200.7 96.7 107,1 6.3 117.1 87.0 109,5 2.9	3.6 K 312.1 150.4 166.6 9.8 182.1 135.3 170.3			Notes Notes	- 16	
5th Pass L Pass#	Species RBT // BRN // // // // // // // // //	Length 64 314 228 239 90 251 230 243	2.9 200.7 96.7 107.1 6.3 117.1 87.0 109.5 2.9 3.9	3.6 K 312.1 150.4 166.6 9.8 182.1 135.3 170.3			Notes Notes St Pass BRN	- 16 - 10	
5th Pass L Pass#	Species RBT II BRN II II II ROT BRN	Length 6 4 3 1 4 2 2 8 2 3 9 9 0 2 5 - 1 2 3 0 2 4 3 6 8 7 8	wWeight 2,3 200.7 96.7 107,1 6.3 117.1 87.0 109,5 2.9	3.6 K 312.1 150.4 166.6 9.8 182.1 135.3 170.3 4.5 6.1			Notes Notes St Pass BRN	- 16 - 10	
5th Pass L Pass#	Species RBT II BRN II II II ROT BRN II	Length 6 4 314 228 239 90 251 230 243 68 78 83	wWeight 2,3 200.7 96.7 107,1 6.3 117.1 87.0 109.5 2.9 3.9 4.6	3.6 K 312.1 150.4 166.6 9.8 182.1 135.3 170.3 4.5 6.1 7.2			Notes Notes St Pass BRN	- 16 - 10	
5th Pass L Pass#	Species RBT II BRN II II II ROT BRN II RBT	Length 6 4 314 228 239 90 251 230 243 68 78 83 326	2,3 200.7 96.7 107,1 6.3 117.1 87.0 109,5 2.9 3.9 4.6 254.8	3.6 K 312.1 150.4 166.6 9.8 182.1 135.3 170.3 4.5 6.1 7.2 396.3 5.4 316.3			Notes Notes St Pass BRN	- 16 - 10	
5th Pass L Pass#	Species RBT II BRN II II II RBT II RBT	Length 6 4 314 228 239 90 251 230 243 68 78 83 326 73	wiWeight 200.7 96.7 107.1 6.3 117.1 87.0 109.5 2.9 3.9 4.6 254.8 3,5	3.6 K 312.1 150.4 166.6 9.8 182.1 135.3 170.3 4.5 6.1 7.2 396.3 5.4 316.3 109.6			Notes Notes St Pass BRN	- 16 - 10	
5th Pass L Pass#	Species RBT II BRN II II II ROT BRN II RBT II II II RBRN II RBT	Length 6 4 314 228 239 90 251 230 243 68 78 83 326 73 299 199	DuiWeight 2 200.7 96.7 107.1 6.3 117.1 87.0 109.5 2.9 3.9 4.6 254.8 3.5 203.4 70.5 53.5	3.6 K 3.12.1 150.4 166.6 9.8 182.1 135.3 170.3 4.5 6.1 7.2 396.3 5.4 316.3 109.6 83.2			Notes Notes St Pass BRN	- 16 - 10	
5th Pass L Pass#	Species RBT II BRN II II ROT BRN II RBT II II II RBT II II II II II II II II II	Length 6 4 314 228 239 90 251 230 243 68 78 83 326 73 299 199 193 169	wiWeight 2 2,00.7 96.7 107.1 6.3 117.1 87.0 109.5 2.9 3.9 4.6 254.8 3.5 203.4 70.5 53.5	3.6 K 3.2.1 150.4 166.6 9.8 182.1 13.5.3 170.3 4.5 6.1 7.2 396.3 5.4 316.3 109.6 83.2 58.3			Notes Notes St Pass BRN	- 16 - 10	
5th Pass L Pass#	Species RBT II BRN II II ROT BRN II RBT II II II RBT II	Length 6 4 374 228 239 90 257 230 243 68 78 83 326 73 299 199 193 169 73	DuiWeight 2 200.7 96.7 107.1 6.3 117.1 87.0 109.5 2.9 3.9 4.6 254.8 3.5 203.4 70.5 53.5 37.5	3.6 K 3.12.1 150.4 166.6 9.8 182.1 135.3 170.3 4.5 6.1 7.2 396.3 5.4 316.3 109.6 83.2 58.3 5.3			Notes Notes St Pass BRN	- 16 - 10	
5th Pass L Pass#	Species RBT II BRN II II II ROT RBT II II II RBT II II II II II RBT II II II RBT	Length 6 4 3/4 228 239 90 251 230 243 68 78 83 326 73 299 199 193 169 73 75	Dut Weight 1 200.7 96.7 107.1 6.3 117.1 87.0 109.5 2.9 3.9 4.6 254.8 3.5 203.4 70.5 53.5 37.5 3.4 3.5	3.6 K 3.2.1 150.4 166.6 9.8 182.1 135.3 170.3 4.5 6.1 7.2 396.3 5.4 316.3 109.6 83.2 58.3 5.3			Notes Notes St Pass BRN	- 16 - 10	
5th Pass L Pass#	Species RBT II BRN II II ROT BRN II II RBT II II BRN Length 6 4 374 228 239 90 257 230 243 68 78 83 326 73 299 199 193 169 73 75	Dut Weight 1 200.7 200.7 200.7 200.7 200.7 107.1 6.3 117.1 87.0 109.5 2.9 3.9 4.6 254.8 3.5 203.4 70.5 53.5 37.5 3.4 3.5 4.0	3.6 K 3.2.1 150.4 166.6 9.8 182.1 135.3 140.3 14.5 6.1 7.2 396.3 5.4 316.3 109.6 83.2 58.3 5.3 5.4 6.2			Notes Notes St Pass BRN	- 16 - 10		
5th Pass L Pass#	Species RBT II BRN II II II ROT RBT II II II II II II RBT BRN II	Length 6 4 374 228 239 90 257 230 243 68 78 83 326 73 299 199 193 169 73 75	Dut Weight 1 2, 1 2, 1 2, 1 2, 1 2, 1 2, 1 2, 1 2	3.6 k 3.12.1 150.4 166.6 9.8 182.1 135.3 170.3 4.5 6.1 7.2 396.3 5.4 316.3 109.6 83.2 58.3 5.3 5.4 4.2 9.0			Notes Notes St Pass BRN	- 16 - 10	
5th Pass L Pass#	Species RBT II BRN II II II ROT BRN II II RBT II II II II RBT II II II II RBT II II RBT II II RBT II II RBT II RBT RBT II RBT	Length 6 4 374 228 239 90 251 230 243 68 78 83 326 73 299 199 199 193 169 73 75 78 90 69	DuiWeight 2 200.7 96.7 107.1 6.3 117.1 87.0 109.5 2.9 3.9 4.6 254.8 3.5 203.4 70.5 53.5 37.5 3.4 3.5 4.0 57.9 3.0	3.6 K 3.2.1 150.4 166.6 9.8 182.1 135.3 140.3 14.5 6.1 1.2 396.3 5.4 316.3 109.6 8.3.2 58.3 5.4 6.2 9.0 4.7			Notes Notes St Pass BRN	- 16 - 10	
5th Pass L Pass#	Species RBT II BRN II II II ROT RBT II II II II II II RBT BRN II	Length 6 4 374 228 239 90 257 230 243 68 78 83 326 73 299 199 193 169 73 75	Dut Weight 1 2,00.7 96.7 107,1 6.3 117.1 87.0 109,5 2.9 3.9 4.6 254.8 3.5 203.4 70,5 53.5 37,5 3.4 3.5 4.0 5.9	3.6 k 3.12.1 150.4 166.6 9.8 182.1 135.3 170.3 4.5 6.1 7.2 396.3 5.4 316.3 109.6 83.2 58.3 5.3 5.4 4.2 9.0			Notes Notes St Pass BRN	- 16 - 10	

Thomas R. Payne & Associates Electrofishing Survey - Fish Data Form

D '	MON	morret	١ ,	COA 44	(continued)
Reach:	<u> </u>	ر المانان	PENNY	GKAMS	(continued)
ass#	Species	Length	Weight	Seale-Comple	Notes
155	BRN	77	3.9	6.1	
2 hg	RBT	51	0.9	1,4	
	11	207	80:0	124.4	
	11	260	127.1	197.7	ard Pass
			38.1	59.3	BRN-B
		257		207.0	RBT-5
	BRN	260	123,8	192.5	73
	11	178	41.2	64.1	
	11	94	7.4	11.5	
	17	92	6.6	10.3	
	"	95	5.8	9.0	
	11	83	4.7	7.3	
	"	95	7.0	10.9	
	RBT	60	1,9	3.0	
				A CONTRACTOR OF THE PARTY OF TH	
319	RBT	60	2.0	3.1	3 th Pass
	BRN	85	5./	7.9	BRN-2
	11	82	4.3	6.7	RBT-L
	"				3
				1	
	†				
	-			 	
	 			 	
				 	
				 	
				 	
	PENNY D (DWT)	() TC	4	1.1T 4	(DWT X 1.55521)

Stream:	Mai	mmoth	Creek	_ County:	Mono	Date	e: 10 114	12006
Reach:	CL			County:	NIOCE	 S Page		of 2
Air Temp.:	9.50	@ 0940	H20 Temp.:	42.205	@ 0935-	S Page Conductivit	v: /2//3	microSiemens
Blocknets:	Top	1 Bo++0	n 20'.	14" meile		Specific Cond	l.: /93.a	microSiemens
				750	۳	. ≪er • Calinit	y:	
				₹ <u></u>	@ 1235			
Electroshoo						D.O	6.65	
Personnel:	Shockers:	11m	STEVE				5-3,0	% saturation
ANGLECT S	670×						1: <u>13.0</u>	
The way	Matters:	505				Pnotos	s:	
34,55	thellers.	- ear	, Cindy					
Personnel: AND LEAR S AND LEAR S DVA NAME FISH								
Shocker	TIM	STEVE			i i			
Model	VIA	12A						
Battery ID	, ,	,						
Voltage:	300	300						
Frequency:	0	60						
1st Pass	1940	2166						
2nd Rass	1886	1884						
2nd Gassa. Srd Gass	1507	1534						
4th Rasse								
5in Rass.					<u></u>			
	engths a	re fork le	ngths or t	otal lengths	in millimete	rs Weigh	ts are in gr	rams
Pass#					in millimete			rams
	Species RBT	Length	weight ##7.7	Scale Sample		Notes		rams
Pass#	Species RBT	Length 269 226	Weight 247.7 170.5		Hatche	Notes		rams
Pass#	Species RBT II	Length 269 226 264	Weight 247.7 170.5 216.6		Hatche	Notes		rams
Pass#	Species RBT	Length 269 226	Weight 247.7 170.5		Hatche	Notes		rams
Pass#	Species RBT 1) 1)	Length 269 226 264 205 172 263	Weight 247.7 170.5 216.6 119.2		1-tat che 11.	Notes		ams
Pass#	Species RBT 11 11 11 BRN RBT	Length 269 226 264 205 172 263 232	Weight 247.7 170.5 216.6 119.2 65.7 216.4 172.8		Hatche 11. 11.	Notes		ams
Pass#	Species RBT 11 11 11 BRN RBT 11	Length 269 226 264 205 172 263 232 222	Weight 247.7 170.5 216.6 119.2 65.7 216.4 172.8 124.0		1-tat che 11.	Notes		ams
Pass#	Species RBT II II II BRN RBT II	Length 269 264 264 205 172 263 232 222 156	Weight 247.7 170.5 216.6 119.2 65.7 216.4 172.8 124.0 47.4		Hatche 11. 11. 11. 11.	Notes		rams
Pass#	Species RBT II II BRN RBT II II II II II II II II II	Length 269 226 264 205 172 263 232 222	Weight 247.7 170.5 216.6 119.2 65.7 216.4 172.8 124.0		Hatche 11. 11.	Notes		rams
Pass#	Species RBT II II II BRN RBT II	Length 269 264 264 205 172 263 232 232 156 269	Weight 247.7 170.5 216.6 119.2 65.7 216.4 172.8 124.0 47.4 224.5		Hatche 11. 11. 11. 11. 11. 11. 11. 11. 11. 1	Notes		rams
Pass#	Species RBT II II II BRN RBT II II BRN RBT II II BRN	Length 269 226 264 205 172 263 232 222 156 269	Weight 247.7 170.5 216.6 119.2 65.7 216.4 172.8 124.0 47.4 224.5 55,7		Hatche 11. 11. 11. 11.	Notes		rams
Pass#	Species RBT II II II BRN RBT II II BRN RBT RBT RBT RBT RBT	Length 269 2264 205 172 263 232 222 156 269 164 194	Weight 247.7 170.5 216.6 119.2 65.7 216.4 172.8 124.0 47.4 224.5 55.7 110.2		Hatche 11. 11. 11. 11. 11. 11. 11. 11. 11. 1	Notes		rams
Pass#	Species RBT II II II BRN RBT II II RBT II RBT II RBPN RBT II	Length 269 226 264 205 172 263 232 222 156 269 164 194 206	Weight 247.7 170.5 216.6 119.2 65.7 216.4 172.8 124.0 47.4 224.5 55.7 110.2 122.7		Hatche 1) 1) 1) 1) 1) 1) 1) 1) 1) 1	Notes		rams
Pass#	Species RBT II II II BRN RBT II II II BRN RBT II	Length 269 2264 205 172 263 232 222 156 269 164 194 206 196	Weight 247.7 170.5 216.6 119.2 65.7 2/6.4 172.8 124.0 47.4 224.5 \$		Hatche 11. 11. 11. 11. 11. 11. 11. 11. 11. 1	Notes		rams
Pass#	Species RBT II II II BRN RBT II	Length 269 2264 205 172 263 232 222 156 269 164 194 206 196 212	Weight 247.7 170.5 216.6 119.2 65.7 2/6.4 172.8 124.0 47.4 224.5 \$		Hatche 11. 11. 11. 11. 11. 11. 11. 11. 11. 1	Notes		rams
Pass#	Species RBT II II II BRN RBT II II II II II II II BRN II II II BRN RBT II II II II BRN	Length 269 2264 205 172 263 232 222 156 269 164 194 206 196 212 257	Weight 247.7 170.5 216.6 119.2 65.7 2/6.4 172.8 124.0 47.4 224.5 \$		Hatche 11. 11. 11. 11. 11. 11. 11. 11. 11. 1	Notes		rams
Pass#	Species RBT II II BRN RBT	Length 269 269 264 205 172 263 232 222 156 269 164 194 206 196 212 257 170 249 181	Weight 2 47.7 170.5 216.6 119.2 65.7 216.4 172.8 124.0 97.4 924.5 55.7 110.2 122.7 106.8 127.1 218.6 62.5 213.1 90.5		Hatche 11. 11. 11. 11. 11. 11. 11. 11. 11. 1	Notes		rams
Pass#	Species RBT II II BRN RBT II BRN RBT II II BRN RBT II II BRN RBT II II II BRN II II II II II II II II II	Length 269 269 264 205 172 263 232 222 156 269 164 194 206 196 212 257 170 249 181 208	Weight 247.7 170.5 216.6 119.2 65.7 216.4 172.8 124.0 47.4 224.5 55.7 110.2 122.7 106.8 127.1 218.6 62.5 213.1 90.5 104.3		Hatche 11. 11. 11. 11. 11. 11. 11. 11. 11. 1	Notes		rams
Pass#	Species RBT II II BRN RBT II II BRN RBT II II II BRN RBT II II II BRN RBT II II II II II II II II II	Length 269 269 264 205 172 263 232 222 /56 269 /64 /94 206 196 212 257 /70 249 /81 208 /76	Weight 2 47.7 170.5 216.6 119.2 65.7 216.4 172.8 124.0 47.4 224.5 55.7 110.2 122.7 106.8 127.1 218.6 62.5 213.1 90.5 104.3 60.2		Hatche Hatch Hatch Hatch Hatch Hatche Hatche Hatche H	Notes		rams
Pass#	Species RBT II II BRN RBT II II BRN RBT II II BRN RBT II II BRN RBT II II II II II II II II II	Length 269 269 264 205 172 263 232 222 156 269 164 194 206 196 212 257 170 249 181 208 176 201	Weight 2 47.7 170.5 216.6 119.2 65.7 216.4 172.8 124.0 47.4 224.5 55.7 110.2 122.7 106.8 127.1 218.6 62.5 213.1 90.5 104.3 60.2 126.9		Hatche 11. 11. 11. 11. 11. 11. 11. 11. 11. 1	Notes		rams
Pass#	Species RBT II II BRN RBT II II BRN RBT II II II BRN RBT II II II BRN RBT II II II II II II II II II	Length 269 269 264 205 172 263 232 222 /56 269 /64 /94 206 196 212 257 /70 249 /81 208 /76	Weight 2 47.7 170.5 216.6 119.2 65.7 216.4 172.8 124.0 47.4 224.5 55.7 110.2 122.7 106.8 127.1 218.6 62.5 213.1 90.5 104.3 60.2		Hatche Hatch Hatch Hatch Hatch Hatche Hatche Hatche H	Notes		rams

Thomas R. Payne & Associates Electrofishing Survey - Fish Data Form

 Stream:
 Mannoth Creek
 Date: 10 1/4 1 2006
 Page:
 2 of 2

 Reach:
 CL
 (continued)

Notes Weight | Scale Sample Pass# Species Length BRN 185 84.6 Hitchery RBT 308 393,1 241 159.8 11 11 11 219 140.1 211 109.0 11 11 14 276 234.3.) i missing one eye j.)-185 72.2 190 93.5 Hatchery 1) 207 120.8 most. / hook in throat 11 179 70.8 21 216 131.3 100.2 ti188 146.9 222 154 Puss 185.2 241 11 291 288.9 BRN RBT-41 221 132,5 283 275.1 1 1 202 110.4 207 135,9 1.1 214,1 11 265 217 144,4 196 114.4 BRN 81 6.7 91 9.4 3.0 RBT 63 78.4 RBT 178 208 118.2 Hatchery 202 1455 201 305 333.0 3.2 II3.4 7.0 BRN 10.9 100 10.9 11 95 11 95 9.2 86 7.9 310 BRN 78 13rd Pass RBT 23**5** 150.3 Hatcher 103.8 13RN- 2 213 25-1 178.5 BRN BBT-

> BRN = 9 -5- 2 N= 17+4 SE= 2.00 RBT = 41-7- 2 N- 50= 1 SE= 0.61 D= 66± 2 SE= 1.00

Stream:	Mam	math	Creek	County:	Mono	Date:	10 11:	212006
Reach	7) H	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	121-013	Est. Q:	N 20 cfs	Page:	1 0	of 3
Air Temp		<u> </u>	H20 Temp.:	40.4°F -	Mono ~ 20 cfs	Conductivity:	79.8	microSiemens
Blocknets:	700	1 130++	om 20'	small mes	<u></u>	Specific Cond.:	131.8	microSiemens
Doodh Lon	ath: 3	20 ++					0.1	
Reach Len	yıı	< /	f 12	1 Becks	mak.	· ·		mg/L
Electrosho	cker Type: _	JM I'	<u> </u>	i CECC	Jec N			
Personnel:	Shockers:	Im	SALAMU IE EGG	HOVICH			71.0	% saturation
		2150	15 E.G.G	reres				
	Netters:	Sean	, Cindy					
Shocker	Steve	Tim						
Model	12 A	// A						
Battery ID	Lewis	Klatte						
Voltage:	300	300						
Frequency:	60	60						
Tal Frees 2nd Frees	1284							
2nd Rass		145-9						
3rd Pass	943						 	
40 Pass								1
5th Rass								<u></u>
						187-1-64	in e	
	_engths a	re fork le	ngths or t	otal lengths	in millimeters		s are in g	jrams
Pass#	Lengths a	Length	Weight	otal lengths Scale Sample	in millimeters	Weight Notes	s are in g	rams
har -	Species BRN	Length	Weight 8,6		in millimeters		s are in g	rams
Pass#	Species BRN RBT	Length 94 54	Weight 8,6		in millimeters		s are in g	rams
Pass#	Species BRN RBT BRN	Length	Weight 8,6		in millimeters		s are in g	rams
Pass#	Species BRN RBT	Length 9 4 5 4 150 43 190	Weight 8,6 2,2 37,8 1,0 89.3		in millimeters		s are in g	rams
Pass#	Species BRN RRT BRN RET BRN II	Length 9 4 5 4 150 43 190 197	Weight 8.6 2.2 3.7,8 1.0 89.3 90.1		in millimeters		s are in g	rams
Pass#	Species BRN RRT BRN RRT BRN II	Length 94 54 150 43 190 197 232	Weight 8,6 2.2 3.7,8 1.0 89.3 90.1 133.8		in millimeters		s are in g	rams
Pass#	Species BRN RRT BRN RET BRN II	Length 9 4 5 4 150 43 190 197	Weight 8.6 2.2 3.7,8 1.0 89.3 90.1		in millimeters		s are in g	rams
Pass#	Species BRN RBT BRN RBT BRN III	Length 94 54 150 43 190 197 232 237 232 207	Weight 8.6 2.2 37.8 1.0 89.3 90.1 133.8 146.3 145.7 108.1			Notes	s are in g	rams
Pass#	Species BRN RBT BRN III III II	Length 94 54 150 43 190 197 232 237 232 207	Weight 8.6 2.2 3.7.8 1.0 89.3 90.1 133.8 146.3 145.7 108.1 67.9		in millimeters Hatcher	Notes	s are in g	rams
Pass#	Species BRN RIST II II II II II II	Length 94 54 150 43 190 197 232 237 232 207 181 147	Weight 8.6 2.2 3.7.8 1.0 89.3 90.1 133.8 146.3 145.7 108.1 67.9 48.7			Notes	s are in g	rams
Pass#	Species BRN RBT BRN II	Length 94 54 150 43 190 197 232 237 232 207 181 147 244	Weight 8.6 2.2 37.8 1.0 89.2 90.1 133.8 146.3 145.7 108.1 67.9 48.7 184.2			Notes	s are in g	rams
Pass#	Species BRN RBT BRN NIST BRN NIST NI	Length 9 4 5 4 150 43 190 197 232 237 232 207 181 147 244 145	Weight 8.6 2.2 37.8 1.0 89.2 90.1 133.8 146.3 145.7 108.1 67.9 48.7 184.2 34.5			Notes	s are in g	rams
Pass#	Species BRN RRT BRN RIST BRN II	Length 94 54 150 43 190 197 232 237 232 207 181 147 244 145	Weight 8.6 2.2 37.8 1.0 89.3 90.1 133.8 146.3 145.7 108.1 67.9 48.7 184.2 34.5 37.0			Notes	s are in g	rams
Pass#	Species BRN RBT BRN II	Length 94 54 150 43 190 197 232 237 232 207 181 147 244 145 145 79	Weight 8.6 2.2 37.8 1.0 89.3 90.1 133.8 146.3 145.7 108.1 67.9 48.7 184.2 34.5 37.0 5.5			Notes	s are in g	rams
Pass#	Species BRN RRT BRN II II II II BRN II II II II II II II BRN II II II II II II II II II	Length 9 4 5 4 150 43 190 197 232 237 232 207 181 147 244 145 145 79 77	Weight 8.6 2.2 37.8 1.0 89.3 90.1 133.8 146.3 145.7 108.1 67.9 48.7 184.2 34.5 37.0 5.5			Notes	s are in g	rams
Pass#	Species BRN RBT BRN II	Length 94 54 150 43 190 197 232 237 232 207 181 147 244 145 145 79 77	Weight 8.6 2.2 37.8 1.0 89.3 90.1 133.8 146.3 145.7 108.1 67.9 48.7 184.2 34.5 37.0 5.5		Hatcher	Notes		rams
Pass#	Species BRN RRT BRN RET BRN II	Length 9 4 5 4 150 43 190 197 232 237 232 207 181 147 244 145 145 79 77	Weight 8.6 2.2 37.8 1.0 89.3 90.1 133.8 146.3 145.7 108.1 67.9 48.7 184.2 34.5 37.0 5.5 6.1 126.9		Hatcher	Notes		rams
Pass#	Species BRN RRT BRN II	Length 94 54 150 43 190 197 232 237 232 207 181 147 244 145 145 79 77 218 281	Weight 8.6 2.2 37.8 1.0 89.3 90.1 133.8 146.3 145.7 108.1 67.9 48.7 /84.2 34.5 37.0 5.5 6.1 126.9 2.42.1		Hatcher, Hatchery	Notes Y Dopsa/Fi		rams
Pass#	Species BRN RRT BRN II	Length 94 54 150 43 190 197 232 237 232 207 181 147 244 145 74 74 218 281 286	Weight 8.6 2.2 37.8 1.0 89.3 90.1 133.8 146.3 145.7 108.1 67.9 48.7 /84.2 34.5 37.0 5.5 6.1 126.9 242.1 276.1		Hatcher, Harchery	Notes Notes		rams
Pass#	Species BRN RRT BRN II II II II II II II II II	Length 9 4 5 4 1/50 43 1/90 197 232 237 232 207 1/81 1/47 244 1/45 79 77 2/8 2/81 2/86 3/3/2 2/4	Weight 8.6 2.2 37.8 1.0 89.3 90.1 133.8 146.3 145.7 108.1 67.9 48.7 184.2 34.5 37.0 5.5 6.1 126.9 242.1 276.1 438.2		Hatcher, Harchery	Notes Notes		rams

Stream: $M_{a,mmo} + h$ Crec/c Date: 101/212006 Page: 2 of 3 Reach: DH (continued)

Notes Weight | Scale Sample Species Length Pass# Stunted Dorsal - Hatchery R13T 67.4 171 13/2N 43.8 156 78 5.8 BRN 54.9 156 RBT 83 BRN 5,6 11 Skinny -254 165,2 11 11 270 230.6 294,4 Skinny 325 17 86 11 82 7.7 11 163 47.0 11 80 6.5 49.4 164 39.2 145 RBT BRN 245 156.5 219 141.4 11 217 109.4 241 Hetchery - one small pectoral 346.0 RBT 130.3 136.3 220 147.4 BRN 232 299 RBT 260 219.8 31,8 142 BRN 27.6 136 36,2 147 43.4 153 42.5 164 44.1 151 152 42,4 Hatchery - Storted Dorsal 97.1 195 66 5-8 2.3 6.2 84 6.3 139 25.5 BRN- 44 RBT 20.5 120 27.8 RBT - 25 BRN 135

142

141

147

171

RBT

11

31.6

42.4

56.2

14

Total - 69.

 Stream:
 Mammoth Creek
 Date: 16 1 / 2 1 2006
 Page: 3 of 3

 Reach:
 DH
 (continued)

Pass#	Species	Length	Weight	Scale Sample	Notes
2 nd	BRN	251	146.5	Coale Gample	11000
	RBT	224	134.2		Halchery
	11	284	242,1		7,70,000,000
	BRN	227	126.0		
	BRN	238	164.8		
	11	155	39.1		
	RBT	271	198.1		
	BRN	/93	78.6		
	11	134	28.7		
	RBT	6.3	2.7		
	1)	59	2.4		
	BRN	78	5.9		
	1)	83	7.3		
	RBT	5-4	2,0		2 nd Pass
	BRN	78	6.4		BRN - 13
	11	82	6.9		RBT - G Total - 19
	/1	82	7.4		Total - 19
	11	81	6.5		
	- 11	74	4.8		<u> </u>
314	RBT	251	15-6.3		
	BRN	206	101.3		
	11	155	39.8		
	7.1	151	43.9		
	71	153	41.9		BRN 44-13-9
	11	87	8.8		324 Pass RB7 25-6-3
	71	79	5.9		BRN-9 Au 69-19-12
		80	6.5		B/N - 9 444 64-11 12
	11	88	7.6 6.2		RBT - 3
		79	1.8		7=70 SE 3.3
	1313T	50 53	1.8		Ñ = 34 SE 1.0
	**	د د			
			,		
-					
			i		

Stream:	Ma	mmoth	1 Creek	County:	Mono	Date:	1011	312006
Reach:	DL			– Est. Q:	20 cfs	Page:	1 o	
Air Temp.:	7°c	@ 0915	H20 Temp.	- : 4.2°C	@ 0907	Conductivity:		microSiemens
Blocknets:	Top	1 Bo++0	- m 20'.	1/4" mest		Specific Cond.:		
Reach Len	gth:	794	, , , , , , , , , , , , , , , , , , ,		1			
Treadil Len	·	Cus	7. 10	<u> </u>	39.8°/=	e 0910	0.1	
Electrosno	cker Type:		1 emp 0	c @ /200]		D.O.:	9,93	
Personnel:	Shockers:	Tim 3	ALAMU	HOVICH			76,6	% saturation
		- STEV	E EGG	EICS				
	Netters:	Cind	, Sean					
			71 - 0-31					
Shocker	Steve	Tim						Ĺ
Model	12A	ILA						
Battery ID	Klatte	1	h	↓				
Voltage:	400	400						
Frequency:	30	30	<u> </u>					
1st Pass		1872						
2nd Pass	1376	15-19	· ·	 				
3rd Rase	1376	1467		-				
4th/Pass 5th Pass								
			<u> </u>					
	enaths a	re fork le	naths or	total lengths	n millimeters	Weights	are in ar	ame
					n millimeters	Weights	are in gr	ams
Pass#	Species	Length	Weight	Scale Sample		Notes	are in gr	rams
		Length 264			n millimeters Hatchery	Notes	s are in gr	ams
Pass#	Species RBT BRN 11	Length 264 204 165	Weight 208.9 86.4 50.1			Notes	s are in gr	ams
Pass#	Species RBT BRN 11	Length 264 204 165 222	Weight 208.9 86.4 50.1 137.0			Notes	s are in gr	ams
Pass#	Species RBT BRN 11	Length 264 204 165	Weight 208.9 86.4 50.1			Notes	s are in gr	rams
Pass#	Species RBT BRN 11 11	Length 264 204 165 222 167	Weight 208,9 86.4 50.1 137.0 54.4 171.6 189.4			Notes	s are in gr	ams
Pass#	Species RBT BRN 11 11 11 11	Length 264 204 165 222 167 234 246 152	Weight 208.9 86.4 50.1 137.0 54.4 171.6 189.4		Hatchery	Notes	s are in gr	ams ·
Pass#	Species RBT BRN II II II II II II II II II	Length 264 204 165 222 167 234 246 152 163	Weight 208,9 86.4 50.1 137.0 54.4 171.6 189.4 40.5 47.5		Hatchery	Notes - Pass		ams
Pass#	Species RBT BRN 11 11 11 11	Length 264 204 165 222 167 234 246 152	Weight 208.9 86.4 50.1 137.0 54.4 171.6 189.4		Hatchery	Notes Pass BRN - 13		ams
Pass#	Species RBT BRN II II II RBT	Length 264 204 165 222 167 234 246 152 163 148	Weight 208,9 86.4 50.1 137.0 54.4 171.6 189.4 40.5 47.5 37.9		Hatchery	Notes - Pass		ams
Pass#	Species RBT BRN 11 11 11 11 11 11 11 11 11	Length 264 204 165 222 167 234 246 152 163 148 155 239 261	Weight 208,9 86.4 50.1 137.0 54.4 171.6 189.4 40.5 47.5 37.9 48.5 166.1 217.7		Hatchery	Notes Pass BRN - 13		ams
Pass#	Species RBT BRN 11 11 11 11 11 11 11 RBT 11 BRN 11	Length 264 204 165 222 167 234 246 152 163 148 155 239 261 236	Weight 208,9 86.4 50.1 137.0 54.4 171.6 189.4 40.5 47.5 37.9 48.5 166.1 217.7		Hatchery	Notes 1855 13RN - 13 1881 - 7		ams
Pass#	Species RBT BRN II II II II RBT II BRN II RBT	Length 264 204 165 222 167 234 246 152 163 148 155 239 261 236 287	Weight 208,9 86.4 50.1 137.0 54.4 171.6 189.4 40.5 47.5 37.9 48.5 166.1 217.7 153.6 274.1		Hatchery	Notes 1855 13RN - 13 1881 - 7		ams
Pass#	Species RBT BRN 11 11 11 11 11 RBT 11 RBT BRN 11 RBT	Length 264 204 165 222 167 234 246 152 163 148 155 239 261 236 287	Weight 208,9 86.4 50.1 137.0 54.4 171.6 189.4 40.5 47.5 37.9 48.5 166.1 217.7 153.6 274.1 6,8		Hatchery	Notes 1855 13RN - 13 1881 - 7		ams
Pass#	Species RBT BRN II II II II RBT II RBT BRN RBT RBT	Length 264 204 165 222 167 234 246 152 163 148 155 239 261 236 287 81 78	Weight 208,9 86.4 50.1 137.0 54.4 171.6 189.4 40.5 47.5 37.9 48.5 166.1 217.7 153.6 274.1 6,8 6.0		Hatchery	Notes 1855 13RN - 13 1881 - 7		ams
Pass#	Species RBT BRN 11 11 11 11 11 RBT 11 RBT BRN 11 RBT	Length 264 204 165 222 167 234 246 152 163 148 155 239 261 236 287 81 78	Weight 208,9 86.4 50.1 137.0 54.4 171.6 189.4 40.5 47.5 37.9 48.5 166.1 217.7 153.6 274.1 6,8 6.0 5.1		Hatchery	Notes 1855 13RN - 13 1881 - 7		ams
Pass#	Species RBT BRN II II II II II BRN II RBT II RBT RBT RBT RBT RBT	Length 264 204 165 222 167 234 246 152 163 148 155 239 261 236 287 81 78	Weight 208,9 86.4 50.1 137.0 54.4 171.6 189.4 40.5 47.5 37.9 48.5 166.1 217.7 153.6 274.1 6,8 6.0		Hatchery	Notes 1855 13RN - 13 1881 - 7		ams
Pass# / 5±	Species RBT BRN II II II II BRN II RBT II RBT II RBT RBT II RBT II RBT II RBT II II RBT II II II II II II II II II	Length 264 204 165 222 167 234 246 152 163 148 155 239 261 236 287 81 78 70	Weight 208,9 86.4 50.1 137.0 54.4 171.6 189.4 40.5 47.5 37.9 48.5 166.1 217.7 153.6 274.1 6,8 6.0 5.1		Hatchery Hatchery	Notes 1855 13RN - 13 1881 - 7		ams
Pass#	Species RBT BRN II II II II BRN II RBT II RBT II RBT RBT II RBT II RBT II RBT II II RBT II II II II II II II II II	Length 264 204 165 222 167 234 246 152 163 148 155 239 261 236 287 81 78 70 64 156	Weight 208,9 86.4 50.1 137.0 54.4 171.6 189.4 40.5 37.9 48.5 166.1 217.7 153.6 274.1 6.8 6.0 5.1 3.1 46.6		Hatchery	Notes 1855 13RN - 13 1881 - 7		ams
Pass# / 5±	Species RBT BRN II II II II BRN II RBT BRN RBT BRN RBT II BRN	Length 264 204 165 222 167 234 246 152 163 148 155 239 261 236 287 81 78 70 64	Weight 208,9 86.4 50.1 137.0 54.4 171.6 189.4 40.5 47.5 37.9 48.5 166.1 217.7 153.6 274.1 6.8 6.0 5.1 3.1 46.6		Hatchery Hatchery	Notes 1855 13RN - 13 1881 - 7		ams

Stream: Mammoth Creek	Date: 10 1 /3 1 2006	Page:	\mathcal{Z} of	2	
- · · · · · · · · · · · · · · · · · · ·	(4)				

Reach.					Neter
Pass#	Species	Length	Weight	Scale Sample	Notes
2 29	RBT	275	234.3		2 nd Pass
	11	148 65	43,2		BRN-1
	/1	65	2.9		RBT - B
	11	219	142,4		9
	n	286	257.6		Itatchery
		206	7.0		ratenty
3 50	200	25-0	220.1		
3 -	RBT	259	220.1		
	,,,	65-	3.6		12td P
	11	60	2.6		3td Pass
	BRN	272	267,3		13rn - 2 12BT - 3
	11	144	40.0		PBT-3
					5~
					BRN 13-1-2 A=16 Se:0.56
					RBT 7-8-3 N-23 SE=7.1
					BRN 13-1-2 A=16 Se=0.56 RBT 7-8-3 A=23 SE=7.1 ALL 20. 9-5 A=37 SE=3.37
		<u> </u>			
					
		ļ	ļ		
		<u> </u>		 	
			1		
 			1		
 				l	
ļ				-	
		,			
			<u> </u>	<u></u>	

Stream:	Man.	010-04/	C- no k	County:	MAN	ь	Date:	10 112	212006	
Dooch:	F 11	Divers	LYCER	Est. Q:	N 2 D				f 4	
A:- T	L /7	DIVERSI	H20 Town:		<u>~~~</u>		Conductivity: _		microSiemens	
Air Temp.:		<u>@</u>	nzo remp	<u> </u>	<u>@</u>					
		,							microSiemens	
Reach Leng	gth:		·/	ppt						
Electroshoo	ker Type:	<u>Smi</u>	th-1100	Back	reck_		D.O.:_		mg/L	
Personnel:	Shockers:	STEVE EGGERS SEAN THOBARSEN Photos: CINDY GLACE TIM SALAMUNOVICH							% saturation	
1 0F C	~	SEAN	THOBAF	SEN			pH:_			
(3 /2)	ys)						_ Photos:_			
Jour Strate	Netters:	<u> </u>	DY GLI	1CE						
134		- 11/0	SALA	MUNDVICH						
						1	-			
Shocker	Steve 11 A					1	 			
Model Battery ID	Clexin	12A Columbia				 	1			
Voltage:	300	300					1			
Frequency:	60	60								
1st Pass	1748	1853								
2nd Pasa	1362	1091								
Sid Paus	1145	1057								
4th Pa44										
5th Ress										
	engths a	re fork le	ngths or t	otal lengths	in millim	eters	Weights	are in g	rams	
Pass#	Species	Length	Weight	Scale Sample			Notes			
Pass# 1 59	Species RBT	Length 223	Weight /ステ,チ	Scale Sample						
	RBT 11	223	127.7	Scale Sample	Wor	n Fins	Notes	hery		
	RBT 11 BRN	223 211 240	127.7 113,5 165.2	Scale Sample	Wor	n Fins		hery		
	RBT 11	223	127.7	Scale Sample			- # Hails			
	RBT 11 BRN " 11 RBT	223 211 240 296	127.7 113,5 165.2 265.2 131,9 168.9	Scale Sample					latchery	
	RBT II BRN II II RBT	223 211 240 296 225 241 219	127.7 113,5 165.2 265.2 131,9 11,8.9 109.2	Scale Sample	Pec	Missing,	Hoole da.		lutchery	
	RBT II BRN II PBT II	223 211 240 296 225 241 219 194	127.7 113,5 165.2 265.2 131,9 168.9 109.2 81.6	Scale Sample	Pec		Hoole da.		lut , hery	
	RBT II BRN II II RBT	223 211 240 296 225 241 219	127.7 113,5 165.2 265.2 131,9 11,8.9 109.2	Scale Sample	Pec	Missing,	Hoole da.		lutchery	
	RBT II BRN 11 RBT II II BRN	223 211 240 296 215 241 219 194 239	127.7 113,5 165.2 265.2 131,9 11,8.9 109.2 81.6	Scale Sample	Pec	Missing,	Hoole da.		lutchery	
	RBT II BRN II RBT II BRN	223 211 240 296 215 241 219 194 239 255	127.7 113,5 165.2 265.2 131,9 108.9 109.2 81.6 156.9 218.6 116.6 127.2	Scale Sample	Pec	Missing,	Hoole da.		Into hery	
	RBT II BRN II II BRN II II BRN II II BRN II II II RBT	223 211 240 296 215 241 219 194 239 255 221 228 181	127.7 113,5 165.2 265.2 131,9 108.9 109.2 81.6 156.9 218.6 116,6 127.2 63,5	Scale Sample	Рес Ноч	Missing,	Hook da.	mage //	latinery	
	RBT II BRN II II BRN II II BRN II II II II RBT II	223 211 240 296 215 241 219 194 239 255 221 228 181 209	127.7 113,5 165.2 265.2 131,9 108.9 109.2 81.6 156.9 2186.6 116,6 127.2 63,5 122,5	Scale Sample	Рес Ноч	Missing,	Hoole da.	mage //	lutchery	
	RBT II BRN II II BRN II II BRN II II II II RBT II	223 211 240 296 215 241 219 194 239 255 221 228 181 209 /38	127.7 113,5 165.2 265.2 131,9 108.9 109.2 81.6 156.9 2186.6 127.2 63,5 122,5 32.6	Scale Sample	Pec Hou	Missing,	Hook da	mage //		
	RBT II BRN II II BRN II II BRN II	223 211 240 296 215 241 219 194 239 255 221 228 181 209 138 289	127.7 113,5 165.2 265.2 131,9 108.9 109.2 81.6 156.9 218.6 116,6 127.2 63,5 122,5 32.6 180.5	Scale Sample	Pec Hou	Missing / K Damag	Hook da.	mage //		
	RBT II BRN II II BRN II	223 211 240 296 215 241 219 194 239 255 221 228 181 209 138 209 241	127.7 113,5 165.2 265.2 131,9 108.9 109.2 81.6 156.9 2186.6 127.2 63,5 122,5 32.6 180.5 131,6	Scale Sample	Pec Hou	Missing,	Hook da	mage //		
	RBT II BRN II BRN II BRN II BRN II	223 211 240 296 215 241 219 194 239 255 221 228 181 209 138 209 242 165	127.7 113,5 165.2 265.2 131,9 108.9 109.2 81.6 156.9 2186.6 127.2 63,5 122,5 32.6 180.5 131.6 48.7	Scale Sample	Pec Hou	Missing / K Damag	Hook da	mage //		
	RBT II BRN II II BRN II	223 211 240 296 215 241 219 194 239 255 221 228 181 209 /38 289 241 165 219	127.7 113,5 165.2 265.2 131,9 108.9 109.2 81.6 156.9 2186.6 127.2 63,5 122,5 32.6 180.5 131.6 48.7 110.6	Scale Sample	Pec Hou	Missing / K Damag	Hook da	mage //		
	RBT II BRN II BRN II BRN II BRN II	223 211 240 296 215 241 219 194 239 255 221 228 181 209 138 209 242 165	127.7 113,5 165.2 265.2 131,9 108.9 109.2 81.6 156.9 2186.6 127.2 63,5 122,5 32.6 180.5 131.6 48.7	Scale Sample	Pec Hou	Missing, & Damag	Hook da	mage //		
	RBT II BRN II II BRN II II II II II II II II II	223 211 240 296 215 241 219 194 239 255 221 228 181 209 138 209 241 165 219 80	127.7 113,5 165.2 265.2 131,9 108.9 109.2 81.6 156.9 2186.6 127.2 63,5 122,5 32.6 180.5 131,6 48.7 110,6 7,0	Scale Sample	Pec Hou	Missing, & Damag	Hook da	mage //		
	RBT II BRN II BRN II BRN II II II II II II II II II	223 211 240 296 215 241 219 194 239 255 221 228 181 209 138 289 241 165 219 80 81 82 77	127.7 113,5 165.2 265.2 131,9 108.9 109.2 81.6 156.9 2186.6 127.2 63,5 122,5 32.6 180.5 131,6 48.7 110.6 7.0 7.5 5.7	Scale Sample	Pec Hou	Missing, & Damag	Hook da	mage //		
	RBT II BRN II BRN II BRN II II II II II II II II II	223 211 240 296 215 241 219 194 239 255 221 228 181 209 138 289 241 165 219 80 81 82 77 84	127.7 113,5 165.2 265.2 131,9 109.2 81.6 156,9 2186.6 127.2 63,5 122,5 32.6 180.5 131,6 48.7 110,6 7,0 7,5 5,7 5,7 5,7	Scale Sample	Pec Hou	Missing, & Damag	Hook da	mage //		
	RBT II BRN II BRN II BRN II II II II II II II II II	223 211 240 296 215 241 219 194 239 255 221 228 181 209 138 289 241 165 219 80 81 82 77	127.7 113,5 165.2 265.2 131,9 108.9 109.2 81.6 156.9 2186.6 127.2 63,5 122,5 32.6 180.5 131,6 48.7 110.6 7.0 7.5 5.7	Scale Sample	Pec Hour	Missing, & Damag	Hook das	mage //		

Stream: Mammoth Creek Date: 101/212006 Page: 2 of 4

Reach: ______ (continued)

Pass#	Species	Length	Weight	Scale Sample	Notes
15t	BRN	88	8.8	, , , ,	
	11	85-	7.5		
	71	78	55-		
	.11	78	4.6		
	11	72	9.0		
	t)	77	5-1		
	n	86	7.7		
	11	83	6,0		
	n	B 2	6,5		
	11	88	7.5		
	12BT	5-3			
	11	53 65	1, B 3, 4		/
	BRN	77	5-,5-		
-	12BT	61	2.9		
	11	269	244.0		
	17	205	111.7		
	11	218	115.8		
	1/	193	77,7		Halifery
	Ti .	189	7571		
	βl	205	93,2		
	BRN	258	194.3		
	RBT	184	70.7		
	11	175	63.6		Hotober
	11	140	25.6		Hatchery 11 Hatchery
	11	166	65.9		
	11	180	63.7		Hatchery
*	7)	15-4	44,6		
	/1	125	27,5		
	17	150	29.4		
	BRN	79	6.5-		
	71	78	6.5- 5.5-		
	n	85-	8.2		
	t i	82-	6.7		
	(1	90	8.9		
	110	88	7.5		
	71	94	7.5° 7.1		
	L	73	4.5-		
	7)	86	6.7		
	RBT	65	3,6		
	'11	212	107.4		
	11	124	30,5		•
	11	214	135,7		
	11	2.81	235.6		
	11	209	107.2		
	,1	185	70.8		Hatchery Part

PRN 18+6-24

Stream: Mannoth Creek Date: 10 1/2 12006 Page: 3 of 4

(continued) EH Reach: Notes Weight | Scale Sample Species Length Pass# 18T 230 158.3 Hatchery 220 138.8 7.1 136.1 BRN 230 177 62,3 11 163,4 RBT 238 202 88.9 11 Hatchery 11 210 103,3 Hatchery # 184 69.8 192 /) 86.3 204 11 BRN 170 2.1 RBT 60 BRN 3.8 1213T 6.1 BRN 1st Pass RBT 70 6.3 44 12RN -78 BRN 5.4 RBT - 49 80 72 4.1 RBT 4,2 68 3.1 62 9.1 BRN 89 4.4 Note: 2nd pars data after 3 rd 3 50 RBT 216 107.1 Hutchery -142 37.0 47.9 BRN 94 3 rd 1255 11.2 5.1 BRN - 5 RBT -7.6 80 8.1 85 2 hd BRN 85 6.4 RBT 218 127,8 Hatenery 2/3 109.1 11 288 315.6 Hatchers BRN 82 7.0 90 8.1 n186,1 250 RBT 195 97.9 28.7 147 50.0 7) 171 42,3 71 149

194

80,5

Page: 4 of 4 Date: 10 1 121 2006 Mammoth Creek Stream: (continued) EH

Reach:

Notes Weight Scale Sample Species Length Pass# 2 nd 33.7 148 RIST 7.5 BRN 87 85 7.8 11 6.1 9.8 96 n_{\perp} 64.5 RBT 173 BRN 89 204 1453 142.7 RBT 234 BRN - 18 BRN 211 12BT - 13 96 /1 7,3 11 7.9 11 87 87 38.6 n150 RBT 1.6 59 2.4 6.8 BRN 7.3 85 PART TO 1498-10-16 TING-NOTE: IN ORDER TO MAXIMIZE REMAINING DAYLIGHT, AFTER MAKING SECOND PASS WE PLACED THOSE FISH IN LIVE CART AND THEN MADE THIRD PASS; THEN WE WORKED UP THE
THIRD PASS FISH (STILL IN
BUCKETS) FOLLOWED BY THE
SECOND PASS FISH PREVIOUSLY
STORED IN THE LIVE CART.

Thomas R. Payne & Associates Electrofishing Survey - Fish Data Form County: MoND Date: 10 / 11 / 2006 Stream: Mammoth Creeks Est. Q: N20 CFS Page: 1 of 3 Air Temp.: @ H20 Temp.: #4/9.1°c @ 1/24 /48,9°F Conductivity: 125.4 microSiemens

Blocknets: Top / Botton 20' smg/l mcsh ('4") /225 Specific Cond.: 180.2 microSiemens PH= 8.0 Salinity: O-1 ppt Reach Length: 303 Electroshocker Type: 12A & 11A Smith-Root Back pack D.O.: 6.78 mg/L 59.3 % saturation Personnel: Shockers: STEVE EGGERS SEAN THOBABEN Photos: Tim SALAMUNOVICH Netters: Cindy GLASE Shocker SEAN STEVE Model HH. 12A ک الکتیا Battery ID KLATTE 300 Voltage: 300 60 60 isi Pass 2nd Pass 3nd Pass 1251 1325 886 945 871 887 Weights are in grams Lengths are fork lengths or total lengths in millimeters Notes Pass# Species Length∽ Weight g Scale Sample 810,7 409 BRN 102 RBT 137 34.8 70.7 170 71 133 32.3 17.0 BRN 108 48.5 RBT BRN 16.9 1.11 292.1 288 RBT 116 BRN 95 10.8 105 11.2 11 119 20.3 84 11 124 24.6 11 12.9 RBT 102 404,5 BRN

Tail Burn

82

77

99

<u>//8</u> /01

121

116

98

H

11.

RIST

BRN

Γ

7.5

6.2

11.6 21.9

12.1 21.1

19.4

11.8

Stream: Mammoth Creek Date: 10/1/1/2006 Page: 2 of 3

Reach: EL (continued)

Pass#	Species	Length	Weight	Scale Sample	Notes
15±	BRN	115	21.0	35,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,	RBT	229	173.5		7900
	BRN	244	175.8		
	11	85	7.0		
	//	284	305.5		
•	11	107	15.6		
	RBT	202	99,2		
	BRN	259	219.4		
	RBT	282	242.1		Detrimed max - HATCHERY
	11	333	485.0	HOTCHERY.	- (Purcture wound through abdomen +)
	BRN	94	11.2	110.100	Defirmed pecs
	11	115	22,3		- I amount of the second of th
	//	111	17,3		
	71	113	20.2		
-	RBT	322	393.1		HATCHERY
	11	115	18.7		no (Cray
	BRN	94	9.3		
	RBT	167	60.1		Burn on Side
	BRN	99	//,5		2011 001 3700
	D/K#V	88	8.4		
	71	280	280.1		
	/1	274	252.5		
	RIST	115	20.8		~
	11	15-6	55,3		
	//	120	24,4		
	BRN	287	260.1		
	11	271	221,7		
	11	/22	22,9		
	11	93	10.6		
	17	/32	29.2		
	//	105	14,3		
	11	107	15.1		
	11	107	14.9	1	
	11	96	11.4		100000000000000000000000000000000000000
	l»	96	11.3		
	11	115	17.2		
	n .	//2	19.5		
	n n	/07	16,7		
	11:	73	7.3		
	21	75	5.9		
	RBT	117	19.7		
	BRN	/03			
	P P		12.4		
		104			
	RBT	204	12.3		Hotchard
	71	207	92.5		Hatchery

 Stream:
 Mammath Creck
 Date:
 1011112006
 Page:
 3 of 3

 Reach:
 £L
 (continued)

Pass#	Species	Length	Weight	Scale Sample	Notes
154	RBT	173	69.1	1	Hatchery - Frayed Dorsal
	(1)	256	207.0		7 7 29 200 3073-7
	BRN	291	244.9		35 mm
	RBT	122	22.4		30,7250
		378	284.0		Hatchery & St. Car & Hatchery - Scaped by
	BRN	311	337,3		Add 12 - cscaped by
					holding net
2 nd	BRN	105	13.7		BSKR (31-35MM)) IST MACC
	BRN	106	13.7		BSKR (31-35MM)) ST ASS. /
	BRN	94	19.7		
	BRN	113	16.7		
	RBT	108	15.7		
	RBT	152	43,9		W
	RBT	254	192.4		Hetcheny - fraged DI deformed pect
	BRN	363	588.5		of kype
	BRN	92	10.6		
	BRN	121	21.5		
	Ban	111	15,5		
	BRN	92	8,9		
	BRN	34	7.2		
	BRN	127	27.2		
	RBT	345	374,7		Hztehen frm DI
	RBT	284	3411.1		Hotchey fry DI Hotchey fry PlèP2 > fraged DI
	BRN	77	5.1		
	BRN	104	15.6		
	BRN	95	10.6		
	BRN	106	13.0		
	BRN	127	24.0		
	BRN	240	162.1		
	BRN	81	6.2		- Marian
	BRN	84	7.3		
	BAN	91	10.1		TAIL BURN
	SKR	39	0.6		11- 2-11-11-11
	SKR	51	1.3		
	SKR	_34	0.對		
	401	23	0.3		end pass 2
-					
3	BRN	87	6.4		
		.94	9.9	·	
		96	11.5		
		107	15.4		
		93	10.1		
	1,	95	9.6		
	RBT	164	62.8		wild
	SKR	30	0.3		
	Jul	28	0.3		.,

32 Jul SKR 28 0.3 0

Tand press :

Appendix C

MicroFish 3.0 and Program CAPTURE Output for the October 2006 Electrofishing Data

Species: All trout

Removal Pattern: 126 49 33 Total Catch = 208 Population Estimate = 233

Chi Square = 2.575 Pop Est Standard Err = 9.825 Lower Conf Interval = 213.645 Upper Conf Interval = 252.355

Capture Probability = 0.523 Capt Prob Standard Err = 0.046 Lower Conf Interval = 0.432 Upper Conf Interval = 0.614

Stream: Mammoth Crk, Site BH, 15 Oct 2006

Species: Rainbow trout (all wild – no hatchery trout captured)

Removal Pattern: 30 10 5 Total Catch = 45 Population Estimate = 47

Chi Square = 0.332 Pop Est Standard Err = 2.288 Lower Conf Interval = 45.000 Upper Conf Interval = 51.605

Capture Probability = 0.634 Capt Prob Standard Err = 0.084 Lower Conf Interval = 0.464 Upper Conf Interval = 0.803

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 42.39501.

Species: Brown trout

Removal Pattern: 95 39 28 Total Catch = 162 Population Estimate = 186

Chi Square = 2.156 Pop Est Standard Err = 10.459 Lower Conf Interval = 165.396 Upper Conf Interval = 206.604

Capture Probability = 0.492 Capt Prob Standard Err = 0.055 Lower Conf Interval = 0.385 Upper Conf Interval = 0.600

Stream: Mammoth Crk, Site BH, 15 Oct 2006

Species: Brook trout

Removal Pattern: 1 0 0 Total Catch = 1

Population Estimate = 1 (**Using Program CAPTURE**)

Chi Square = 0.000

Pop Est Standard Err = 0.00014 Lower Conf Interval = 1.000 Upper Conf Interval = 2.000

Capture Probability = 0.9996

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 0.00.

Species: All trout

Removal Pattern: 17 5 2 Total Catch = 24 Population Estimate = 24

Chi Square = 0.413 Pop Est Standard Err = 0.887 Lower Conf Interval = 24.000 Upper Conf Interval = 25.836

Capture Probability = 0.727 Capt Prob Standard Err = 0.099 Lower Conf Interval = 0.523 Upper Conf Interval = 0.931

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 22.16407.

Stream: Mammoth Crk, Site BL, 14 Oct 2006

Species: Rainbow trout (all)

Removal Pattern: 4 1 2 Total Catch = 7 Population Estimate = 7

Chi Square = 2.682 Pop Est Standard Err = 1.195 Lower Conf Interval = 7.000 Upper Conf Interval = 9.924

Capture Probability = 0.583 Capt Prob Standard Err = 0.239 Lower Conf Interval = -.002 Upper Conf Interval = 1.168

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 4.07553.

Species: Rainbow trout (wild)

Removal Pattern: 2 1 2 Total Catch = 5 Population Estimate = 6

Chi Square = 1.651 Pop Est Standard Err = 3.572 Lower Conf Interval = 5.000 Upper Conf Interval = 15.184

Capture Probability = 0.385 Capt Prob Standard Err = 0.372 Lower Conf Interval = -.572 Upper Conf Interval = 1.341

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was -3.184378.

Stream: Mammoth Crk, Site BL, 14 Oct 2006

Species: Rainbow trout (hatchery)

Removal Pattern: 2 0 0 Total Catch = 2

Population Estimate = 2 (**Using Program CAPTURE**)

Chi Square = 0.000 Pop Est Standard Err = 0.000 Lower Conf Interval = 2.000 Upper Conf Interval = 3.000

Capture Probability = 0.9998

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 1.00.

Species: Brown trout

Removal Pattern: 13 4 0 Total Catch = 17 Population Estimate = 17

Chi Square = 1.267 Pop Est Standard Err = 0.389 Lower Conf Interval = 17.000 Upper Conf Interval = 17.824

Capture Probability = 0.810 Capt Prob Standard Err = 0.097 Lower Conf Interval = 0.604 Upper Conf Interval = 1.016

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 16.17598.

Stream: Mammoth Crk, Site CH, 15 Oct 2006

Species: All trout

Removal Pattern: 26 13 3 Total Catch = 42 Population Estimate = 44

Chi Square = 0.989 Pop Est Standard Err = 2.309 Lower Conf Interval = 42.000 Upper Conf Interval = 48.658

Capture Probability = 0.627 Capt Prob Standard Err = 0.088 Lower Conf Interval = 0.449 Upper Conf Interval = 0.805

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 39.34229.

Species: Rainbow trout (all wild – no hatchery trout captured)

Removal Pattern: 10 5 1 Total Catch = 16 Population Estimate = 16

Chi Square = 0.896 Pop Est Standard Err = 0.900 Lower Conf Interval = 16.000 Upper Conf Interval = 17.918

Capture Probability = 0.696 Capt Prob Standard Err = 0.129 Lower Conf Interval = 0.422 Upper Conf Interval = 0.970

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 14.08179.

Stream: Mammoth Crk, Site CH, 15 Oct 2006

Species: Brown trout

Removal Pattern: 16 8 2 Total Catch = 26 Population Estimate = 27

Chi Square = 0.596 Pop Est Standard Err = 1.730 Lower Conf Interval = 26.000 Upper Conf Interval = 30.557

Capture Probability = 0.634 Capt Prob Standard Err = 0.111 Lower Conf Interval = 0.406 Upper Conf Interval = 0.863

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 23.44265.

Species: All trout

Removal Pattern: 50 12 4 Total Catch = 66 Population Estimate = 66

Chi Square = 0.603 Pop Est Standard Err = 1.091 Lower Conf Interval = 66.000 Upper Conf Interval = 68.180

Capture Probability = 0.767 Capt Prob Standard Err = 0.055 Lower Conf Interval = 0.658 Upper Conf Interval = 0.876

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 63.81968.

Stream: Mammoth Crk, Site CL, 14 Oct 2006

Species: Rainbow trout (all)

Removal Pattern: 41 7 2 Total Catch = 50 Population Estimate = 50

Chi Square = 0.356 Pop Est Standard Err = 0.607 Lower Conf Interval = 50.000 Upper Conf Interval = 51.220

Capture Probability = 0.820 Capt Prob Standard Err = 0.055 Lower Conf Interval = 0.709 Upper Conf Interval = 0.931

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 48.78038.

Species: Rainbow trout (wild)

Removal Pattern: 7 6 1 Total Catch = 14 Population Estimate = 14

Chi Square = 2.822 Pop Est Standard Err = 1.229 Lower Conf Interval = 14.000 Upper Conf Interval = 16.655

Capture Probability = 0.636 Capt Prob Standard Err = 0.154 Lower Conf Interval = 0.305 Upper Conf Interval = 0.968

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 11.34522.

Stream: Mammoth Crk, Site CL, 14 Oct 2006

Species: Rainbow trout (hatchery)

Removal Pattern: 34 1 1 Total Catch = 36 Population Estimate = 36

Chi Square = 4.248 Pop Est Standard Err = 0.131 Lower Conf Interval = 36.000 Upper Conf Interval = 36.266

Capture Probability = 0.923 Capt Prob Standard Err = 0.044 Lower Conf Interval = 0.834 Upper Conf Interval = 1.012

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 35.73397.

Species: Brown trout

Removal Pattern: 9 5 2 Total Catch = 16 Population Estimate = 17

Chi Square = 0.254 Pop Est Standard Err = 1.997 Lower Conf Interval = 16.000 Upper Conf Interval = 21.235

Capture Probability = 0.571 Capt Prob Standard Err = 0.157 Lower Conf Interval = 0.239 Upper Conf Interval = 0.904

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 12.76531.

Stream: Mammoth Crk, Site DH, 12 Oct 2006

Species: All trout

Removal Pattern: 69 19 12 Total Catch = 100 Population Estimate = 104

Chi Square = 2.523 Pop Est Standard Err = 3.173 Lower Conf Interval = 100.000 Upper Conf Interval = 110.282

Capture Probability = 0.645 Capt Prob Standard Err = 0.055 Lower Conf Interval = 0.535 Upper Conf Interval = 0.755

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 97.71796.

Species: Rainbow trout (all)

Removal Pattern: 25 6 3 Total Catch = 34 Population Estimate = 34

Chi Square = 1.031 Pop Est Standard Err = 0.970 Lower Conf Interval = 34.000 Upper Conf Interval = 35.974

Capture Probability = 0.739 Capt Prob Standard Err = 0.081 Lower Conf Interval = 0.575 Upper Conf Interval = 0.904

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 32.02618.

Stream: Mammoth Crk, Site DH, 12 Oct 2006

Species: Rainbow trout (wild)

Removal Pattern: 17 5 3 Total Catch = 25 Population Estimate = 25

Chi Square = 1.219 Pop Est Standard Err = 1.134 Lower Conf Interval = 25.000 Upper Conf Interval = 27.341

Capture Probability = 0.694 Capt Prob Standard Err = 0.103 Lower Conf Interval = 0.482 Upper Conf Interval = 0.907

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 22.65887.

Species: Rainbow trout (hatchery)

Removal Pattern: 8 1 0 Total Catch = 9 Population Estimate = 9

Chi Square = 0.127 Pop Est Standard Err = 0.099 Lower Conf Interval = 9.000 Upper Conf Interval = 9.227

Capture Probability = 0.900 Capt Prob Standard Err = 0.099 Lower Conf Interval = 0.673 Upper Conf Interval = 1.127

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 8.772664.

Stream: Mammoth Crk, Site DH, 12 Oct 2006

Species: Brown trout

Removal Pattern: 44 13 9 Total Catch = 66 Population Estimate = 70

Chi Square = 1.767 Pop Est Standard Err = 3.313 Lower Conf Interval = 66.000 Upper Conf Interval = 76.610

Capture Probability = 0.606 Capt Prob Standard Err = 0.073 Lower Conf Interval = 0.461 Upper Conf Interval = 0.750

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 63.39012.

Species: All trout

Removal Pattern: 20 9 5 Total Catch = 34 Population Estimate = 37

Chi Square = 0.191 Pop Est Standard Err = 3.371 Lower Conf Interval = 34.000 Upper Conf Interval = 43.837

Capture Probability = 0.548 Capt Prob Standard Err = 0.111 Lower Conf Interval = 0.324 Upper Conf Interval = 0.773

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 30.16327.

Stream: Mammoth Crk, Site DL, 13 Oct 2006

Species: Rainbow trout (all)

Removal Pattern: 7 8 3 Total Catch = 18 Population Estimate = 23

Chi Square = 1.628 Pop Est Standard Err = 7.066 Lower Conf Interval = 18.000 Upper Conf Interval = 37.654

Capture Probability = 0.383 Capt Prob Standard Err = 0.191 Lower Conf Interval = -.012 Upper Conf Interval = 0.778

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 8.345619.

Species: Rainbow trout (wild)

Removal Pattern: 5 6 3 Total Catch = 14 Population Estimate = 20

Chi Square = 0.937 Pop Est Standard Err = 10.039 Lower Conf Interval = 14.000 Upper Conf Interval = 41.011

Capture Probability = 0.318 Capt Prob Standard Err = 0.234 Lower Conf Interval = -.172 Upper Conf Interval = 0.808

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was -1.010712.

Stream: Mammoth Crk, Site DL, 13 Oct 2006

Species: Rainbow trout (hatchery)

Removal Pattern: 2 2 0 Total Catch = 4 Population Estimate = 4

Chi Square = 1.858 Pop Est Standard Err = 0.544 Lower Conf Interval = 4.000 Upper Conf Interval = 5.730

Capture Probability = 0.667 Capt Prob Standard Err = 0.272 Lower Conf Interval = -.198 Upper Conf Interval = 1.531

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 2.270401.

Species: Brown trout

Removal Pattern: 13 1 2 Total Catch = 16 Population Estimate = 16

Chi Square = 3.783 Pop Est Standard Err = 0.561 Lower Conf Interval = 16.000 Upper Conf Interval = 17.195

Capture Probability = 0.762 Capt Prob Standard Err = 0.112 Lower Conf Interval = 0.523 Upper Conf Interval = 1.001

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 14.80458.

Stream: Mammoth Crk, Site EH, 12 Oct 2006

Species: All trout

Removal Pattern: 93 31 8 Total Catch = 132 Population Estimate = 135

Chi Square = 0.327 Pop Est Standard Err = 2.504 Lower Conf Interval = 132.000 Upper Conf Interval = 139.957

Capture Probability = 0.702 Capt Prob Standard Err = 0.044 Lower Conf Interval = 0.616 Upper Conf Interval = 0.789

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 130.0428.

Species: Rainbow trout (all)

Removal Pattern: 49 13 3 Total Catch = 65 Population Estimate = 65

Chi Square = 0.345 Pop Est Standard Err = 1.030 Lower Conf Interval = 65.000 Upper Conf Interval = 67.057

Capture Probability = 0.774 Capt Prob Standard Err = 0.054 Lower Conf Interval = 0.666 Upper Conf Interval = 0.882

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 62.94273.

Stream: Mammoth Crk, Site EH, 12 Oct 2006

Species: Rainbow trout (wild)

Removal Pattern: 35 11 2 Total Catch = 48 Population Estimate = 48

Chi Square = 0.683 Pop Est Standard Err = 0.972 Lower Conf Interval = 48.000 Upper Conf Interval = 49.955

Capture Probability = 0.762 Capt Prob Standard Err = 0.065 Lower Conf Interval = 0.632 Upper Conf Interval = 0.892

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 46.0451.

Species: Rainbow trout (hatchery)

Removal Pattern: 14 2 1 Total Catch = 17 Population Estimate = 17

Chi Square = 0.654 Pop Est Standard Err = 0.389 Lower Conf Interval = 17.000 Upper Conf Interval = 17.824

Capture Probability = 0.810 Capt Prob Standard Err = 0.097 Lower Conf Interval = 0.604 Upper Conf Interval = 1.016

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 16.17598.

Stream: Mammoth Crk, Site EH, 12 Oct 2006

Species: Brown trout

Removal Pattern: 44 18 5 Total Catch = 67 Population Estimate = 69

Chi Square = 0.517 Pop Est Standard Err = 2.305 Lower Conf Interval = 67.000 Upper Conf Interval = 73.599

Capture Probability = 0.663 Capt Prob Standard Err = 0.066 Lower Conf Interval = 0.532 Upper Conf Interval = 0.795

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 64.40065.

Species: All trout

Removal Pattern: 86 29 10 Total Catch = 125 Population Estimate = 129

Chi Square = 0.068 Pop Est Standard Err = 2.982 Lower Conf Interval = 125.000 Upper Conf Interval = 134.905

Capture Probability = 0.672 Capt Prob Standard Err = 0.047 Lower Conf Interval = 0.578 Upper Conf Interval = 0.766

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 123.0947.

Stream: Mammoth Crk, Site EL, 11 Oct 2006

Species: Rainbow trout (all)

Removal Pattern: 24 5 1 Total Catch = 30 Population Estimate = 30

Chi Square = 0.059 Pop Est Standard Err = 0.510 Lower Conf Interval = 30.000 Upper Conf Interval = 31.044

Capture Probability = 0.811 Capt Prob Standard Err = 0.073 Lower Conf Interval = 0.662 Upper Conf Interval = 0.960

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 28.95637.

Species: Rainbow trout (wild)

Removal Pattern: 18 2 1 Total Catch = 21 Population Estimate = 21

Chi Square = 0.913 Pop Est Standard Err = 0.321 Lower Conf Interval = 21.000 Upper Conf Interval = 21.670

Capture Probability = 0.840 Capt Prob Standard Err = 0.080 Lower Conf Interval = 0.672 Upper Conf Interval = 1.008

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 20.32955.

Stream: Mammoth Crk, Site EL, 11 Oct 2006

Species: Rainbow trout (hatchery)

Removal Pattern: 6 3 0 Total Catch = 9 Population Estimate = 9

Chi Square = 1.528 Pop Est Standard Err = 0.461 Lower Conf Interval = 9.000 Upper Conf Interval = 10.062

Capture Probability = 0.750 Capt Prob Standard Err = 0.154 Lower Conf Interval = 0.396 Upper Conf Interval = 1.104

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 7.937934.

Species: Brown trout

Removal Pattern: 52 20 6 Total Catch = 78 Population Estimate = 81

Chi Square = 0.198 Pop Est Standard Err = 2.626 Lower Conf Interval = 78.000 Upper Conf Interval = 86.225

Capture Probability = 0.655 Capt Prob Standard Err = 0.062 Lower Conf Interval = 0.533 Upper Conf Interval = 0.778

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 75.77495.

Stream: Mammoth Crk, Site EL, 11 Oct 2006

Species: Owens sucker

Removal Pattern: 6 3 2 Total Catch = 11 Population Estimate = 11

Chi Square = 1.126 Pop Est Standard Err = 1.270 Lower Conf Interval = 11.000 Upper Conf Interval = 13.830

Capture Probability = 0.611 Capt Prob Standard Err = 0.181 Lower Conf Interval = 0.207 Upper Conf Interval = 1.015

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 8.170433.

Species: Tui chub

Removal Pattern: 4 1 1 Total Catch = 6 Population Estimate = 6

Chi Square = 0.786 Pop Est Standard Err = 0.666 Lower Conf Interval = 6.000 Upper Conf Interval = 7.712

Capture Probability = 0.667 Capt Prob Standard Err = 0.222 Lower Conf Interval = 0.096 Upper Conf Interval = 1.237

The population estimate lower confidence interval was set equal to the total catch. Actual calculated lower CI was 4.288437.